با عرض سلام موضوعات پيشنهادي تز
برای دوستانی که نیاز دارن در ادامه اورده شده است.
master thesis
پيش بيني بار كوتاه مدت با استفاده از رويكردهاي يادگيري تركيبي
طبقه بندي رضايت مشتريان بانكي و موسسات اعتباري با استفاده از رويكردهاي بازگشتي
طبقه بندي اخبار جعل با استفاده از رويكرد تنسور سه بعدي و bert
پيشبيني قيمت سهام با استفاده از اطلاعات تويتر و ماركت
پيش بيني قيمت crypto با استفاده از اطلاعات hashrate
phd thesis
بهبود رویکردهای یادگیری عمیق بر روی اخبار جعل و شایعات
بهبود رویکرد های یادگیری عمیق ترکیبی جهت دستیابی به پورتوفولی بهینه
بهبود رویکردهای ترکیبی یادگیری عمیق برای طبقه بندی crypto با استفاده از اطلاعات hashrate
ارائه رویکردهای مبتنی بر وزن دهی غیر تصادفی در یادگیری عمیق
بهبود یادگیری انتقالی در سری زمانی
ارائه مدل های انتقالی برای طبقه بندی های سری زمانی
جهت مشاوره موضوعات می تونین با بنده در ارتباط باشین
@Raminmousa
برای دوستانی که نیاز دارن در ادامه اورده شده است.
master thesis
پيش بيني بار كوتاه مدت با استفاده از رويكردهاي يادگيري تركيبي
طبقه بندي رضايت مشتريان بانكي و موسسات اعتباري با استفاده از رويكردهاي بازگشتي
طبقه بندي اخبار جعل با استفاده از رويكرد تنسور سه بعدي و bert
پيشبيني قيمت سهام با استفاده از اطلاعات تويتر و ماركت
پيش بيني قيمت crypto با استفاده از اطلاعات hashrate
phd thesis
بهبود رویکردهای یادگیری عمیق بر روی اخبار جعل و شایعات
بهبود رویکرد های یادگیری عمیق ترکیبی جهت دستیابی به پورتوفولی بهینه
بهبود رویکردهای ترکیبی یادگیری عمیق برای طبقه بندی crypto با استفاده از اطلاعات hashrate
ارائه رویکردهای مبتنی بر وزن دهی غیر تصادفی در یادگیری عمیق
بهبود یادگیری انتقالی در سری زمانی
ارائه مدل های انتقالی برای طبقه بندی های سری زمانی
جهت مشاوره موضوعات می تونین با بنده در ارتباط باشین
@Raminmousa
👍4❤1
imbalanced-DL: Deep Imbalanced Learning in Python
🖥 Github: https://github.com/ntucllab/imbalanced-dl
📕 Paper: https://arxiv.org/pdf/2308.15457v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
🖥 Github: https://github.com/ntucllab/imbalanced-dl
📕 Paper: https://arxiv.org/pdf/2308.15457v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
👍3🔥2
✅ LISA: Reasoning Segmentation via Large Language Model
New segmentation task -- reasoning segmentation. The task is designed to output a segmentation mask given a complex and implicit query text.
🖥 Github: https://github.com/dvlab-research/lisa
📕 Paper: https://arxiv.org/abs/2308.00692v2
☑️ Dataset: https://github.com/dvlab-research/lisa#dataset
@Machine_learn
New segmentation task -- reasoning segmentation. The task is designed to output a segmentation mask given a complex and implicit query text.
🖥 Github: https://github.com/dvlab-research/lisa
📕 Paper: https://arxiv.org/abs/2308.00692v2
☑️ Dataset: https://github.com/dvlab-research/lisa#dataset
@Machine_learn
👍1
🎲 Anti-Exploration by Random Network Distillation, Tinkoff Research, ICML 2023
We propose a new ensemble-free offline RL algorithm called SAC-RND. We evaluate our method on the D4RL (Fu et al., 2020) benchmark, and show that SAC-RND achieves performance comparable to ensemble-based methods while outperforming ensemble-free approaches.
🖥 Github: https://github.com/tinkoff-ai/sac-rnd
🤓 Paper: https://proceedings.mlr.press/v202/nikulin23a.html
@Machine_learn
We propose a new ensemble-free offline RL algorithm called SAC-RND. We evaluate our method on the D4RL (Fu et al., 2020) benchmark, and show that SAC-RND achieves performance comparable to ensemble-based methods while outperforming ensemble-free approaches.
🖥 Github: https://github.com/tinkoff-ai/sac-rnd
🤓 Paper: https://proceedings.mlr.press/v202/nikulin23a.html
@Machine_learn
👍1
MLBasicsBook.pdf
3.3 MB
Book: Machine Learning: The Basics
Authors: Alexander Jung
ISBN: -
year: 2023
pages: 287
Tags:#ML
@Machine_learn
Authors: Alexander Jung
ISBN: -
year: 2023
pages: 287
Tags:#ML
@Machine_learn
🔥4👍2❤1
🚀 AgentBench: Evaluating LLMs as Agents.
AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting.
🖥 Github: https://github.com/thudm/agentbench
📕 Paper: https://arxiv.org/abs/2308.03688v1
☑️ Dataset: https://paperswithcode.com/dataset/alfworld
@Machine_learn
AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting.
🖥 Github: https://github.com/thudm/agentbench
📕 Paper: https://arxiv.org/abs/2308.03688v1
☑️ Dataset: https://paperswithcode.com/dataset/alfworld
@Machine_learn
Enthought-v1.0.2.pdf
2.4 MB
Plotting with Pandas series
@Machine_learn
@Machine_learn
✅ SSLRec: A Self-Supervised Learning Library for Recommendation
SSLRec, a novel benchmark platform that provides a standardized, flexible, and comprehensive framework for evaluating various SSL-enhanced recommenders.
🖥 Github: https://github.com/hkuds/sslrec
📕 Paper: https://arxiv.org/abs/2308.05697v1
⛓ Models: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md
☑️ Datasets: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md
ai_machinelearning_big_data
SSLRec, a novel benchmark platform that provides a standardized, flexible, and comprehensive framework for evaluating various SSL-enhanced recommenders.
🖥 Github: https://github.com/hkuds/sslrec
📕 Paper: https://arxiv.org/abs/2308.05697v1
⛓ Models: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md
☑️ Datasets: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md
ai_machinelearning_big_data
👍3❤1
LightTBNet
🖥 Github: https://github.com/dani-capellan/LightTBNet
📕 Paper: https://arxiv.org/pdf/2309.02140v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/montgomery-county-x-ray-set
@Machine_learn
🖥 Github: https://github.com/dani-capellan/LightTBNet
📕 Paper: https://arxiv.org/pdf/2309.02140v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/montgomery-county-x-ray-set
@Machine_learn
👍1
LLM_Fine_Tuning_Molecular_Properties
🖥 Github: https://github.com/SylwiaNowakowska/LLM_Fine_Tuning_Molecular_Properties
📕 Paper: https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/65030b55b338ec988a780108/original/chem-ber-ta-2-fine-tuning-for-molecule-s-hiv-replication-inhibition-prediction.pdf
🔥 Dataset: https://paperswithcode.com/dataset/moleculenet
@Machine_learn
🖥 Github: https://github.com/SylwiaNowakowska/LLM_Fine_Tuning_Molecular_Properties
📕 Paper: https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/65030b55b338ec988a780108/original/chem-ber-ta-2-fine-tuning-for-molecule-s-hiv-replication-inhibition-prediction.pdf
🔥 Dataset: https://paperswithcode.com/dataset/moleculenet
@Machine_learn
❤1👍1
🚀 Gold-YOLO: Efficient Object Detector via Gather-and-Distribute Mechanism
Gold-YOLO, which boosts the multi-scale feature fusion capabilities and achieves an ideal balance between latency and accuracy across all model scales.
🖥 Github: https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO
📕 Paper: https://arxiv.org/abs/2309.11331v2
⏩ Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
Gold-YOLO, which boosts the multi-scale feature fusion capabilities and achieves an ideal balance between latency and accuracy across all model scales.
🖥 Github: https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO
📕 Paper: https://arxiv.org/abs/2309.11331v2
⏩ Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
InstructionERC
🖥 Github: https://github.com/LIN-SHANG/InstructERC
📕 Paper: https://arxiv.org/pdf/2309.11911v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/iemocap
@Machine_learn
🖥 Github: https://github.com/LIN-SHANG/InstructERC
📕 Paper: https://arxiv.org/pdf/2309.11911v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/iemocap
@Machine_learn
❤1
Forwarded from Eng. Hussein Sheikho
This channels is for Programmers, Coders, Software Engineers.
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
✅ Data Science Channels:
https://t.iss.one/addlist/8_rRW2scgfRhOTc0
✅ Main Channel:
https://t.iss.one/DataScienceM
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
✅ Data Science Channels:
https://t.iss.one/addlist/8_rRW2scgfRhOTc0
✅ Main Channel:
https://t.iss.one/DataScienceM
👍7❤1
🗣 Leveraging In-the-Wild Data for Effective Self-Supervised Pretraining in Speaker Recognition
🖥 Github: https://github.com/wenet-e2e/wespeaker
📕 Paper: https://arxiv.org/abs/2309.11730v1
⏩ Demo: https://huggingface.co/spaces/wenet/wespeaker_demo
⭐️ Dataset: https://paperswithcode.com/dataset/wenetspeech
@Machine_learn
pip3 install wespeakerruntime
🖥 Github: https://github.com/wenet-e2e/wespeaker
📕 Paper: https://arxiv.org/abs/2309.11730v1
⏩ Demo: https://huggingface.co/spaces/wenet/wespeaker_demo
⭐️ Dataset: https://paperswithcode.com/dataset/wenetspeech
@Machine_learn
🎓 BayesDLL: Bayesian Deep Learning Library
New Bayesian neural network library for PyTorch for large-scale deep network
🖥 Github: https://github.com/samsunglabs/bayesdll
📕 Paper: https://arxiv.org/abs/2309.12928v1
⭐️ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
@Machine_learn
New Bayesian neural network library for PyTorch for large-scale deep network
🖥 Github: https://github.com/samsunglabs/bayesdll
📕 Paper: https://arxiv.org/abs/2309.12928v1
⭐️ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
@Machine_learn
👍4❤3
Artificial Intelligence Class 10 (2023).pdf
20.8 MB
Book: ARTIFICIAL INTELLIGENCE (SUBJECT CODE 417) CLASS – 3
Authors: Orange Education Pvt Ltd
ISBN: Null
year: 2023
pages: 619
Tags:#AI
@Machine_learn
Authors: Orange Education Pvt Ltd
ISBN: Null
year: 2023
pages: 619
Tags:#AI
@Machine_learn
👍8🔥1
LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models
🖥 Github: https://github.com/dvlab-research/longlora
📕 Paper: https://arxiv.org/pdf/2309.12307v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
🖥 Github: https://github.com/dvlab-research/longlora
📕 Paper: https://arxiv.org/pdf/2309.12307v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
👍1
➕ fastMONAI: A low-code deep learning library for medical image analysis
Simplifying deep learning for medical imaging.
🖥 Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
📕 Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
🖥 Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
@Machine_learn
Simplifying deep learning for medical imaging.
git clone https://github.com/MMIV-ML/fastMONAI
🖥 Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
📕 Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
🖥 Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
@Machine_learn
👍4
30574277.pdf
20.5 MB
Book: Quantum Mechanics and
Bayesian Machines
Authors: George Chapline
Lawrence Livermore National Laboratory, USA
ISBN: Null
year: 2023
pages: 194
Tags:#QM #BM
@Machine_learn
Bayesian Machines
Authors: George Chapline
Lawrence Livermore National Laboratory, USA
ISBN: Null
year: 2023
pages: 194
Tags:#QM #BM
@Machine_learn
Privacy-preserving in-context learning with differentially private few-shot generation
🖥 Github: https://github.com/microsoft/dp-few-shot-generation
📕 Paper: https://arxiv.org/pdf/2309.11765v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/ag-news
@Machine_learn
🖥 Github: https://github.com/microsoft/dp-few-shot-generation
📕 Paper: https://arxiv.org/pdf/2309.11765v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/ag-news
@Machine_learn
👍1
Developing Apps With GPT-4 and ChatGPT (2023).pdf
3 MB
Book: Developing Apps with GPT-4 and
ChatGPT
Authors: Build Intelligent Chatbots, Content Generators, and More
ISBN: 978-1-098-15248-2
year: 2023
pages: 117
Tags:#GPT
@Machine_learn
ChatGPT
Authors: Build Intelligent Chatbots, Content Generators, and More
ISBN: 978-1-098-15248-2
year: 2023
pages: 117
Tags:#GPT
@Machine_learn
👍1