Forwarded from Eng. Hussein Sheikho
This channels is for Programmers, Coders, Software Engineers.
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
✅ Data Science Channels:
https://t.iss.one/addlist/8_rRW2scgfRhOTc0
✅ Main Channel:
https://t.iss.one/DataScienceM
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
✅ Data Science Channels:
https://t.iss.one/addlist/8_rRW2scgfRhOTc0
✅ Main Channel:
https://t.iss.one/DataScienceM
👍7❤1
🔥 DEGramNet: A Novel Convolutional Architecture for Audio Analysis 🚀
📄 Paper: https://link.springer.com/article/10.1007/s00521-023-08849-7
🔥 PyTorch code: https://github.com/robertanto/DEGramNet-torch
📦 TensorFlow code: https://github.com/MiviaLab/DEGramNet
🔗 Google Colab: https://link.springer.com/article/10.1007/s00521-023-08849-7
@Machine_learn
📄 Paper: https://link.springer.com/article/10.1007/s00521-023-08849-7
🔥 PyTorch code: https://github.com/robertanto/DEGramNet-torch
📦 TensorFlow code: https://github.com/MiviaLab/DEGramNet
🔗 Google Colab: https://link.springer.com/article/10.1007/s00521-023-08849-7
@Machine_learn
SpringerLink
Degramnet: effective audio analysis based on a fully learnable time–frequency representation
Neural Computing and Applications - Current state-of-the-art audio analysis algorithms based on deep learning rely on hand-crafted Spectrogram-like audio representations, that are more compact than...
❤1
FATRER
🖥 Github: https://github.com/ludybupt/FATRER
📕 Paper: https://arxiv.org/pdf/2307.12221v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/iemocap
@Machine_learn
🖥 Github: https://github.com/ludybupt/FATRER
📕 Paper: https://arxiv.org/pdf/2307.12221v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/iemocap
@Machine_learn
👍4❤2
Revisiting the Minimalist Approach to Offline Reinforcement Learning
🖥 Github: https://github.com/tinkoff-ai/rebrac
📕 Paper: https://arxiv.org/pdf/2305.09836v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/d4rl
@Machine_learn
🖥 Github: https://github.com/tinkoff-ai/rebrac
📕 Paper: https://arxiv.org/pdf/2305.09836v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/d4rl
@Machine_learn
👍1
30340466.pdf
5.1 MB
Book: Blockchain Tethered AI
Trackable, Traceable Artificial Intelligence and Machine Learning
Authors: Karen Kilroy, Lynn Riley, and Deepak Bhatta
ISBN: 978-1-098-13048-0
year: 2023
pages: 307
Tags:#Python #Blockchain
@Machine_learn
Trackable, Traceable Artificial Intelligence and Machine Learning
Authors: Karen Kilroy, Lynn Riley, and Deepak Bhatta
ISBN: 978-1-098-13048-0
year: 2023
pages: 307
Tags:#Python #Blockchain
@Machine_learn
👍3
🚀 AgentBench: Evaluating LLMs as Agents.
AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting.
🖥 Github: https://github.com/thudm/agentbench
📕 Paper: https://arxiv.org/abs/2308.03688v1
☑️ Dataset: https://paperswithcode.com/dataset/alfworld
@Machine_learn
AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting.
🖥 Github: https://github.com/thudm/agentbench
📕 Paper: https://arxiv.org/abs/2308.03688v1
☑️ Dataset: https://paperswithcode.com/dataset/alfworld
@Machine_learn
👍5
🦙 LLM Attacks
Universal and Transferable Attacks on Aligned Language Models.
🖥 Github: https://github.com/llm-attacks/llm-attacks
📕 Paper: https://arxiv.org/abs/2307.15043v1
🔗 Dataset: https://paperswithcode.com/dataset/ethics-1
@Machine_learn
Universal and Transferable Attacks on Aligned Language Models.
🖥 Github: https://github.com/llm-attacks/llm-attacks
📕 Paper: https://arxiv.org/abs/2307.15043v1
🔗 Dataset: https://paperswithcode.com/dataset/ethics-1
@Machine_learn
❤3
⏩ SEED-Bench: Benchmarking Multimodal LLMs with Generative Comprehension
A benchmark for evaluating Multimodal LLMs using multiple-choice questions.
🖥 Github: https://github.com/ailab-cvc/seed-bench
📕 Paper: https://arxiv.org/abs/2307.16125v1
☑️ Dataset: https://paperswithcode.com/dataset/seed-bench
@Machine_learn
A benchmark for evaluating Multimodal LLMs using multiple-choice questions.
🖥 Github: https://github.com/ailab-cvc/seed-bench
📕 Paper: https://arxiv.org/abs/2307.16125v1
☑️ Dataset: https://paperswithcode.com/dataset/seed-bench
@Machine_learn
👍4🔥1
30780512.pdf
29.7 MB
Book: Git Repository
Management in 30 Days
Authors: Sumit Jaiswal
ISBN: 978-93-55518-071
year: 2023
pages: 290
Tags:#GIT
@Machine_learn
Management in 30 Days
Authors: Sumit Jaiswal
ISBN: 978-93-55518-071
year: 2023
pages: 290
Tags:#GIT
@Machine_learn
❤6👍1🔥1
Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition
🖥 Github: https://github.com/osvai/ske2grid
📕 Paper: https://arxiv.org/pdf/2308.07571v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/ucf101
@Machin_learn
🖥 Github: https://github.com/osvai/ske2grid
📕 Paper: https://arxiv.org/pdf/2308.07571v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/ucf101
@Machin_learn
👍2
تخفيف ويژه دو پكيچ يادگيري عميق ٤٥ جلسه اي و ياديگيري عميق با ٣٦ پروژه عملي براي دوستاني كه نياز دارند.
@Raminmousa
@Raminmousa
Dynamic Low-Rank Instance Adaptation for Universal Neural Image Compression
🖥 Github: https://github.com/llvy21/duic
📕 Paper: https://arxiv.org/pdf/2308.07733v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/pixel-art
@Machine_learn
🖥 Github: https://github.com/llvy21/duic
📕 Paper: https://arxiv.org/pdf/2308.07733v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/pixel-art
@Machine_learn
👍2
S3A: Towards Realistic Zero-Shot Classification via Self Structural Semantic Alignment
🖥 Github: https://github.com/sheng-eatamath/s3a
📕 Paper: https://arxiv.org/pdf/2308.12960v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-100
@Machine_learn
🖥 Github: https://github.com/sheng-eatamath/s3a
📕 Paper: https://arxiv.org/pdf/2308.12960v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-100
@Machine_learn
👍1
🐕 Reprogramming Under Constraints
🖥 Github: https://github.com/landskape-ai/reprogram_lt
📕 Paper: https://arxiv.org/pdf/2308.14969v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
🖥 Github: https://github.com/landskape-ai/reprogram_lt
📕 Paper: https://arxiv.org/pdf/2308.14969v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
❤1
This media is not supported in your browser
VIEW IN TELEGRAM
⭐️ScrollNet: Dynamic Weight Importance for Continual Learning
🖥 Github: https://github.com/firefyf/scrollnet
📕 Paper: https://arxiv.org/abs/2308.16567v1
🔥 Dataset: https://paperswithcode.com/dataset/tiny-imagenet
@Machine_learn
git clone https://github.com/FireFYF/ScrollNet.git
cd ScrollNet
🖥 Github: https://github.com/firefyf/scrollnet
📕 Paper: https://arxiv.org/abs/2308.16567v1
🔥 Dataset: https://paperswithcode.com/dataset/tiny-imagenet
@Machine_learn
⚡️ Improving Pixel-based MIM by Reducing Wasted Modeling Capability
A new method that explicitly utilizes low-level features from shallow layers to aid pixel reconstruction.
🖥 Github: https://github.com/open-mmlab/mmpretrain
📕 Paper: https://arxiv.org/abs/2308.00261v1
⭐️Project: mmpretrain.readthedocs.io/en/latest/
☑️ Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
A new method that explicitly utilizes low-level features from shallow layers to aid pixel reconstruction.
🖥 Github: https://github.com/open-mmlab/mmpretrain
📕 Paper: https://arxiv.org/abs/2308.00261v1
⭐️Project: mmpretrain.readthedocs.io/en/latest/
☑️ Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn