Machine learning books and papers
23.3K subscribers
986 photos
55 videos
929 files
1.33K links
Download Telegram
Forwarded from Eng. Hussein Sheikho
This channels is for Programmers, Coders, Software Engineers.

0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages

Data Science Channels:
https://t.iss.one/addlist/8_rRW2scgfRhOTc0

Main Channel:
https://t.iss.one/DataScienceM
👍71
Revisiting the Minimalist Approach to Offline Reinforcement Learning

🖥 Github: https://github.com/tinkoff-ai/rebrac

📕 Paper: https://arxiv.org/pdf/2305.09836v1.pdf

🔥 Dataset: https://paperswithcode.com/dataset/d4rl

@Machine_learn
👍1
30340466.pdf
5.1 MB
Book: Blockchain Tethered AI
Trackable, Traceable Artificial Intelligence and Machine Learning
Authors: Karen Kilroy, Lynn Riley, and Deepak Bhatta
ISBN: 978-1-098-13048-0
year: 2023
pages: 307
Tags:#Python #Blockchain
@Machine_learn
👍3
🚀 AgentBench: Evaluating LLMs as Agents.

AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting.


🖥 Github: https://github.com/thudm/agentbench

📕 Paper: https://arxiv.org/abs/2308.03688v1

☑️ Dataset: https://paperswithcode.com/dataset/alfworld
@Machine_learn
👍5
🦙 LLM Attacks

Universal and Transferable Attacks on Aligned Language Models.

🖥 Github: https://github.com/llm-attacks/llm-attacks

📕 Paper: https://arxiv.org/abs/2307.15043v1

🔗 Dataset: https://paperswithcode.com/dataset/ethics-1

@Machine_learn
3
SEED-Bench: Benchmarking Multimodal LLMs with Generative Comprehension

A benchmark for evaluating Multimodal LLMs using multiple-choice questions.



🖥 Github: https://github.com/ailab-cvc/seed-bench

📕 Paper: https://arxiv.org/abs/2307.16125v1

☑️ Dataset: https://paperswithcode.com/dataset/seed-bench

@Machine_learn
👍4🔥1
30780512.pdf
29.7 MB
Book: Git Repository
Management in 30 Days
Authors: Sumit Jaiswal
ISBN: 978-93-55518-071
year: 2023
pages: 290
Tags:#GIT
@Machine_learn
6👍1🔥1
Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition

🖥 Github: https://github.com/osvai/ske2grid

📕 Paper: https://arxiv.org/pdf/2308.07571v1.pdf

🔥 Dataset: https://paperswithcode.com/dataset/ucf101

@Machin_learn
👍2
تخفيف ويژه دو پكيچ يادگيري عميق ٤٥ جلسه اي و ياديگيري عميق با ٣٦ پروژه عملي براي دوستاني كه نياز دارند.

@Raminmousa
Dynamic Low-Rank Instance Adaptation for Universal Neural Image Compression

🖥 Github: https://github.com/llvy21/duic

📕 Paper: https://arxiv.org/pdf/2308.07733v1.pdf

🔥 Dataset: https://paperswithcode.com/dataset/pixel-art

@Machine_learn
👍2
S3A: Towards Realistic Zero-Shot Classification via Self Structural Semantic Alignment

🖥 Github: https://github.com/sheng-eatamath/s3a

📕 Paper: https://arxiv.org/pdf/2308.12960v1.pdf

🔥 Dataset: https://paperswithcode.com/dataset/cifar-100

@Machine_learn
👍1
This media is not supported in your browser
VIEW IN TELEGRAM
⭐️ScrollNet: Dynamic Weight Importance for Continual Learning

git clone https://github.com/FireFYF/ScrollNet.git
cd ScrollNet

🖥 Github: https://github.com/firefyf/scrollnet

📕 Paper: https://arxiv.org/abs/2308.16567v1

🔥 Dataset: https://paperswithcode.com/dataset/tiny-imagenet

@Machine_learn
⚡️ Improving Pixel-based MIM by Reducing Wasted Modeling Capability

A new method that explicitly utilizes low-level features from shallow layers to aid pixel reconstruction.



🖥 Github: https://github.com/open-mmlab/mmpretrain

📕 Paper: https://arxiv.org/abs/2308.00261v1

⭐️Project: mmpretrain.readthedocs.io/en/latest/

☑️ Dataset: https://paperswithcode.com/dataset/coco

@Machine_learn