Forwarded from Малоизвестное интересное
РОБОТИЗАЦИЯ – КАКАЯ ОНА НА САМОМ ДЕЛЕ
Как это делается в медиа, писать не нужно. Все и так знают: от маркетингового хайпа и зашкаливающего робо-оптимизма до алармизма типа «массовой безработицы» и «восстания роботов».
Как это выглядит на самом деле, - источников раз-два и обчелся. Например, отчет McKinsey «A FUTURE THAT WORKS: AUTOMATION, EMPLOYMENT, AND PRODUCTIVITY» (полная 140 стр версия и бриф 20 стр. есть здесь).
Самое важное, имхо, следующее.
1. Все, как обычно, упирается в деньги и рост производительности.
Деньги – это примерно половина от $16 трлн., выплачиваемых в виде зарплат, которые можно сэкономить, автоматизировав деятельность людей.
Рост производительности – это то, без чего не растет ВВП на душу населения (да и любой бизнес).
Этот рост возможен за счет (1) роста занятости и (2) роста автоматизации.
2. Проанализировав 2 тыс. типов трудовых активностей для 800 профессий, становится ясно, что только роботами и совсем без людей не обойтись почти нигде:
— полностью автоматизировать можно лишь < 5% профессий (которые почти все уже автоматизированы!);
— но в 60% профессий можно автоматизировать 30%+ активностей;
— самые автоматизируемые активности – это:
✔️ сбор данных - можно автоматизировать 64% активностей;
✔️ обработка данных - 69%;
✔️ регламентированные механические действия (типа сварка, пайка, резка, сортировка …) – 81%
N.B. 1) Каждая из трудовых активностей требует различных сочетаний 18 умений: от умения передвигаться и ориентироваться до креативности, умения планировать, оптимизировать и координировать других.
2) В разных странах и индустриях потенциалы автоматизации сильно разнятся (см. инфографику)
3. Никакая массовая безработица не грозит. Наоборот – грозит дефицит людей. Без увеличения занятости (!), по крайней мере в ближайшие 50 лет, невозможно обеспечить планируемый рост ВВП на душу населения. Автоматизация может дать годовую прибавку в 0,8-1.4% ВВП в год. А нужно 2.8%!
При этом обязательно нужно в корне менять обучение и переобучение. Как это делать, пока никто не знает. Но это нужно придумать позарез. Ау, стартапы!
#Роботы #CценарииБудущего
Поразительно, насколько не совпадают подход и логика обсуждения темы роботизации в медиа и у профессиональных консультантов.
Как это делается в медиа, писать не нужно. Все и так знают: от маркетингового хайпа и зашкаливающего робо-оптимизма до алармизма типа «массовой безработицы» и «восстания роботов».
Как это выглядит на самом деле, - источников раз-два и обчелся. Например, отчет McKinsey «A FUTURE THAT WORKS: AUTOMATION, EMPLOYMENT, AND PRODUCTIVITY» (полная 140 стр версия и бриф 20 стр. есть здесь).
Самое важное, имхо, следующее.
1. Все, как обычно, упирается в деньги и рост производительности.
Деньги – это примерно половина от $16 трлн., выплачиваемых в виде зарплат, которые можно сэкономить, автоматизировав деятельность людей.
Рост производительности – это то, без чего не растет ВВП на душу населения (да и любой бизнес).
Этот рост возможен за счет (1) роста занятости и (2) роста автоматизации.
2. Проанализировав 2 тыс. типов трудовых активностей для 800 профессий, становится ясно, что только роботами и совсем без людей не обойтись почти нигде:
— полностью автоматизировать можно лишь < 5% профессий (которые почти все уже автоматизированы!);
— но в 60% профессий можно автоматизировать 30%+ активностей;
— самые автоматизируемые активности – это:
✔️ сбор данных - можно автоматизировать 64% активностей;
✔️ обработка данных - 69%;
✔️ регламентированные механические действия (типа сварка, пайка, резка, сортировка …) – 81%
N.B. 1) Каждая из трудовых активностей требует различных сочетаний 18 умений: от умения передвигаться и ориентироваться до креативности, умения планировать, оптимизировать и координировать других.
2) В разных странах и индустриях потенциалы автоматизации сильно разнятся (см. инфографику)
3. Никакая массовая безработица не грозит. Наоборот – грозит дефицит людей. Без увеличения занятости (!), по крайней мере в ближайшие 50 лет, невозможно обеспечить планируемый рост ВВП на душу населения. Автоматизация может дать годовую прибавку в 0,8-1.4% ВВП в год. А нужно 2.8%!
При этом обязательно нужно в корне менять обучение и переобучение. Как это делать, пока никто не знает. Но это нужно придумать позарез. Ау, стартапы!
#Роботы #CценарииБудущего
McKinsey & Company
Harnessing automation for a future that works
Automation is happening, and it will bring substantial benefits to businesses and economies worldwide, but it won’t arrive overnight. A new McKinsey Global Institute report finds realizing automation’s full potential requires people and technology to work…
Forwarded from Малоизвестное интересное
Самодельный робот-собачка за $1K – предвестник революции роботов
Многие считают, что техно-революции происходят при скачкообразном росте возможностей продуктов новых технологий. Однако, на самом деле, это совсем не так.
Техно-революции происходят при скачкообразном снижении цен на такие продукты. Персоналки, лаптопы, айподы, айпады, айфоны и т.п., к моменту их превращения в массовый продукт, обладали возможностями (функционалом), придуманными и реализованными за годы до этого.
Но вот бах – цена на гаджет вдруг резко упала … И началась очередная техно-революция.
С роботами все произойдет ровно так же.
Как ни чаруют нас пируэты, выписываемые четвероногими роботами, типа SpotMini и RHex от Boston Dynamics, но никому даже не приходит в голову говорить о техно-революции, пока эти «песики» стоят как хорошее авто.
А за сколько бы вы купили себе механического четвероногого друга, способного выполнять широчайший набор функций – от антидепрессанта до поводыря?
Исследователи из Центра киберфизических систем, IISc, Бангалор, Индия, совершили прорыв, создав робота-собачку за $1K. Его зовут Stoch (на русском имя надо менять во избежание ассоциации «чтоб ты stoch»).
Помимо главного отличия – цены, в 30 раз ниже всех подобных роботов, этот песик размером с болонку:
- собирается, подобно мебели IKEA из набора стандартных деталей, часть из которых печатается на 3D принтере;
- способен бегать разными аллюрами (рысь, галоп, …) без всякого там Глубокого Обучения, и даже без датчиков обратной связи.
Т.е. ни тебе больших данных, ни высокой вычислительной производительности, ничего дорого и сложного. Всего-то 4 ноги с сегментами по 120 мм и суставами, гнущимися под 45 и 70 градусов со скоростью 461 градус в сек. Да по сервомоторчику 16W на каждую ногу. Да одна плата Raspberry Pi 3b, рассчитывающая с помощью системы нелинейных дифф-уравнений координаты, которые затем используются для генерации углов соединения посредством обратной кинематики. И всё!
А бегает и скачет собачка вполне приемлемо. И когда ей добавят несколько датчиков обратной связи будет хоть вальс танцевать, хоть на задних лапках служить.
И учтите, будучи запущенной в серию, даже с учетом украшения собачки пушистой шкурой с хвостом, цена собачки будет не дороже смартфона.
А значит революция роботов начинается.
• 2 минутное видео про Stoch (конструкция, принцип работы и живое бегание) https://www.youtube.com/watch?v=Wxx9pwwTIL4&feature=youtu.be
• Исчерпывающая авторская статья про Stoch https://arxiv.org/abs/1901.00697
#Роботы
Многие считают, что техно-революции происходят при скачкообразном росте возможностей продуктов новых технологий. Однако, на самом деле, это совсем не так.
Техно-революции происходят при скачкообразном снижении цен на такие продукты. Персоналки, лаптопы, айподы, айпады, айфоны и т.п., к моменту их превращения в массовый продукт, обладали возможностями (функционалом), придуманными и реализованными за годы до этого.
Но вот бах – цена на гаджет вдруг резко упала … И началась очередная техно-революция.
С роботами все произойдет ровно так же.
Как ни чаруют нас пируэты, выписываемые четвероногими роботами, типа SpotMini и RHex от Boston Dynamics, но никому даже не приходит в голову говорить о техно-революции, пока эти «песики» стоят как хорошее авто.
А за сколько бы вы купили себе механического четвероногого друга, способного выполнять широчайший набор функций – от антидепрессанта до поводыря?
Исследователи из Центра киберфизических систем, IISc, Бангалор, Индия, совершили прорыв, создав робота-собачку за $1K. Его зовут Stoch (на русском имя надо менять во избежание ассоциации «чтоб ты stoch»).
Помимо главного отличия – цены, в 30 раз ниже всех подобных роботов, этот песик размером с болонку:
- собирается, подобно мебели IKEA из набора стандартных деталей, часть из которых печатается на 3D принтере;
- способен бегать разными аллюрами (рысь, галоп, …) без всякого там Глубокого Обучения, и даже без датчиков обратной связи.
Т.е. ни тебе больших данных, ни высокой вычислительной производительности, ничего дорого и сложного. Всего-то 4 ноги с сегментами по 120 мм и суставами, гнущимися под 45 и 70 градусов со скоростью 461 градус в сек. Да по сервомоторчику 16W на каждую ногу. Да одна плата Raspberry Pi 3b, рассчитывающая с помощью системы нелинейных дифф-уравнений координаты, которые затем используются для генерации углов соединения посредством обратной кинематики. И всё!
А бегает и скачет собачка вполне приемлемо. И когда ей добавят несколько датчиков обратной связи будет хоть вальс танцевать, хоть на задних лапках служить.
И учтите, будучи запущенной в серию, даже с учетом украшения собачки пушистой шкурой с хвостом, цена собачки будет не дороже смартфона.
А значит революция роботов начинается.
• 2 минутное видео про Stoch (конструкция, принцип работы и живое бегание) https://www.youtube.com/watch?v=Wxx9pwwTIL4&feature=youtu.be
• Исчерпывающая авторская статья про Stoch https://arxiv.org/abs/1901.00697
#Роботы
YouTube
Design, Development and Experimental Realization of a Quadrupedal Research Platform: Stoch
Video attachment accepted for presentation in ICCAR 2019. Pre-print (on Arxiv) of the paper can be found in in the following link: https://arxiv.org/abs/1901.00697
Learning methods associated with the hardware (accepted for ICRA 2019): https://www.youtub…
Learning methods associated with the hardware (accepted for ICRA 2019): https://www.youtub…
🥇 Искусственный интеллект победил человека в гонке квадрокоптеров.
Швейцарские эксперты по робототехнике создали алгоритм, который управляет беспилотником более по-человечески, делая резкие и отрывистые маневры.
💬 По словам разработчиков, модель использует очень сложные вычисления, которые заранее выполняют на мощном компьютере — просчет нескольких минут полета может занять несколько часов. Однако исследователи работают над оптимизацией алгоритма для его работы в реальном времени.
#роботы
_______
Источник | #forklogAI
Швейцарские эксперты по робототехнике создали алгоритм, который управляет беспилотником более по-человечески, делая резкие и отрывистые маневры.
💬 По словам разработчиков, модель использует очень сложные вычисления, которые заранее выполняют на мощном компьютере — просчет нескольких минут полета может занять несколько часов. Однако исследователи работают над оптимизацией алгоритма для его работы в реальном времени.
#роботы
_______
Источник | #forklogAI
Science
Time-optimal planning for quadrotor waypoint flight
Quadrotors are among the most agile flying robots. However, planning time-optimal trajectories at the actuation limit through multiple waypoints remains an open problem. This is crucial for applications such as inspection, delivery, search and rescue, and…
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 Робопес за 60 минут научился ходить без тренировок в компьютерной симуляции.
Исследователи из Калифорнийского университета в Беркли задействовали метод обучения с подкреплением. Они разработали алгоритм Dreamer, использующий прошлый опыт для построения модели окружающего мира и прогнозирующий результаты потенциальных действий.
💬 По словам ученых, виртуальный обучающий симулятор никогда не будет таким точным, как реальность. Dreamer поможет роботам освоить новые навыки и приспособиться к неожиданным ситуациям.
#исследование #роботы
_______
Источник | #forklogAI
Исследователи из Калифорнийского университета в Беркли задействовали метод обучения с подкреплением. Они разработали алгоритм Dreamer, использующий прошлый опыт для построения модели окружающего мира и прогнозирующий результаты потенциальных действий.
💬 По словам ученых, виртуальный обучающий симулятор никогда не будет таким точным, как реальность. Dreamer поможет роботам освоить новые навыки и приспособиться к неожиданным ситуациям.
#исследование #роботы
_______
Источник | #forklogAI