⁉️  Interview question  
What happens when you use
When the file is opened in `'r+'` mode, Python's buffered I/O interacts with the OS's `fsync()` call, which forces data to be written to disk immediately. However, if another process calls `fsync()` while the Python context manager is still active, the buffer might contain stale or partially written data, leading to inconsistent reads. The `__exit__` method may flush the buffer before closing, but if the external process has already synced, the file content can become corrupted due to overlapping write operations. This scenario highlights the importance of using atomic operations or file locks (e.g., `fcntl`) when sharing files across processes. 
#️⃣ tags: #Python #AdvancedPython #FileHandling #ContextManager #Multithreading #RaceCondition #OSInteraction #Buffering #Synchronization #ProgrammingInterview
By: t.iss.one/DataScienceQ🚀 
What happens when you use
__enter__ and __exit__ methods in a context manager that opens a file with mode 'r+' but the file is simultaneously being written to by another process using os.fsync()? How does Python’s internal buffering interact with system-level synchronization mechanisms, and what potential race conditions could arise if the file is not properly closed?#️⃣ tags: #Python #AdvancedPython #FileHandling #ContextManager #Multithreading #RaceCondition #OSInteraction #Buffering #Synchronization #ProgrammingInterview
By: t.iss.one/DataScienceQ
Please open Telegram to view this post
    VIEW IN TELEGRAM