Question 4 (Intermediate):
When working with Pandas in Python, what does the
A) Creates a copy of the DataFrame before applying changes
B) Modifies the original DataFrame directly
C) Saves the results to a CSV file automatically
D) Enables parallel processing for faster execution
#Python #Pandas #DataAnalysis #DataManipulation
  When working with Pandas in Python, what does the
inplace=True parameter do in DataFrame operations?A) Creates a copy of the DataFrame before applying changes
B) Modifies the original DataFrame directly
C) Saves the results to a CSV file automatically
D) Enables parallel processing for faster execution
#Python #Pandas #DataAnalysis #DataManipulation
Pandas Python Tip: Custom Column Operations with 
The
Key Takeaway:
#Pandas #Python #DataScience #DataManipulation #PythonTips
---
By: @DataScienceQ ✨
apply()! 🚀The
df.apply() method is powerful for applying a function along an axis of the DataFrame (rows or columns), especially useful for custom transformations on columns or rows.import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie'],
'Score': [85, 92, 78]}
df = pd.DataFrame(data)
Example: Create a new column 'Grade' based on 'Score'
def assign_grade(score):
if score >= 90:
return 'A'
elif score >= 80:
return 'B'
else:
return 'C'
df['Grade'] = df['Score'].apply(assign_grade)
print(df)
You can also use lambda functions for simpler operations
df['Score_Double'] = df['Score'].apply(lambda x: x * 2)
print(df)
Key Takeaway:
df.apply() (especially on a Series) is excellent for element-wise custom logic, often more readable than complex vectorized operations for specific tasks.#Pandas #Python #DataScience #DataManipulation #PythonTips
---
By: @DataScienceQ ✨
❤1
  💡 Python: Converting Numbers to Human-Readable Words
Transforming numerical values into their word equivalents is crucial for various applications like financial reports, check writing, educational software, or enhancing accessibility. While complex to implement from scratch for all cases, Python's
Code explanation: This script uses the
#Python #TextProcessing #NumberToWords #num2words #DataManipulation
━━━━━━━━━━━━━━━
By: @DataScienceQ ✨
  Transforming numerical values into their word equivalents is crucial for various applications like financial reports, check writing, educational software, or enhancing accessibility. While complex to implement from scratch for all cases, Python's
num2words library provides a robust and easy solution. Install it with pip install num2words.from num2words import num2words
# Example 1: Basic integer
number1 = 123
words1 = num2words(number1)
print(f"'{number1}' in words: {words1}")
# Example 2: Larger integer
number2 = 543210
words2 = num2words(number2, lang='en') # Explicitly set language
print(f"'{number2}' in words: {words2}")
# Example 3: Decimal number
number3 = 100.75
words3 = num2words(number3)
print(f"'{number3}' in words: {words3}")
# Example 4: Negative number
number4 = -45
words4 = num2words(number4)
print(f"'{number4}' in words: {words4}")
# Example 5: Number for an ordinal form
number5 = 3
words5 = num2words(number5, to='ordinal')
print(f"Ordinal '{number5}' in words: {words5}")
Code explanation: This script uses the
num2words library to convert various integers, decimals, and negative numbers into their English word representations. It also demonstrates how to generate ordinal forms (third instead of three) and explicitly set the output language.#Python #TextProcessing #NumberToWords #num2words #DataManipulation
━━━━━━━━━━━━━━━
By: @DataScienceQ ✨