Data Analytics & AI | SQL Interviews | Power BI Resources
25.4K subscribers
307 photos
2 videos
151 files
319 links
๐Ÿ”“Explore the fascinating world of Data Analytics & Artificial Intelligence

๐Ÿ’ป Best AI tools, free resources, and expert advice to land your dream tech job.

Admin: @coderfun

Buy ads: https://telega.io/c/Data_Visual
Download Telegram
๐Ÿค– CHATGPT PROMPTS TO FINISH HOURS OF WORK IN SECONDS
โค3
๐—–๐—œ๐—ฆ๐—–๐—ข ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

- Data Analytics
- Data Science 
- Python
- Javascript
- Cybersecurity
 
๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 

https://pdlink.in/4fYr1xO

Enroll For FREE & Get Certified๐ŸŽ“
โค1
Checklist to become a Data Analyst
โค3
Forwarded from Artificial Intelligence
๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—™๐—ฅ๐—˜๐—˜ ๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ,๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ,๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ & ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ๐Ÿ˜

Roadmap:- https://pdlink.in/41c1Kei

Certifications:- https://pdlink.in/3Fq7E4p

Projects:- https://pdlink.in/3ZkXetO

Interview Q/A :- https://pdlink.in/4jLOJ2a

Enroll For FREE & Become a Certified Data Analyst In 2025๐ŸŽ“
โค1
Essential statistics topics for data science

1. Descriptive statistics: Measures of central tendency, measures of dispersion, and graphical representations of data.

2. Inferential statistics: Hypothesis testing, confidence intervals, and regression analysis.

3. Probability theory: Concepts of probability, random variables, and probability distributions.

4. Sampling techniques: Simple random sampling, stratified sampling, and cluster sampling.

5. Statistical modeling: Linear regression, logistic regression, and time series analysis.

6. Machine learning algorithms: Supervised learning, unsupervised learning, and reinforcement learning.

7. Bayesian statistics: Bayesian inference, Bayesian networks, and Markov chain Monte Carlo methods.

8. Data visualization: Techniques for visualizing data and communicating insights effectively.

9. Experimental design: Designing experiments, analyzing experimental data, and interpreting results.

10. Big data analytics: Handling large volumes of data using tools like Hadoop, Spark, and SQL.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
โค1
๐—œ๐—ป๐—ฑ๐˜‚๐˜€๐˜๐—ฟ๐˜† ๐—”๐—ฝ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ฒ๐—ฑ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐Ÿ˜

Whether youโ€™re interested in AI, Data Analytics, Cybersecurity, or Cloud Computing, thereโ€™s something here for everyone.

โœ… 100% Free Courses
โœ… Govt. Incentives on Completion
โœ… Self-paced Learning
โœ… Certificates to Showcase on LinkedIn & Resume
โœ… Mock Assessments to Test Your Skills

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 

https://pdlink.in/447coEk

Enroll for FREE & Get Certified ๐ŸŽ“
โค1
๐—ง๐—ผ๐—ฝ ๐—–๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€ & ๐—Ÿ๐—ฒ๐—ฎ๐—ฑ๐—ถ๐—ป๐—ด ๐—–๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€ ๐—ข๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

Harward :- https://pdlink.in/4kmYOn1

MIT :- https://pdlink.in/45cvR95

HP :- https://pdlink.in/45ci02k

Google :- https://pdlink.in/3YsujTV

Microsoft :- https://pdlink.in/441GCKF

Standford :- https://pdlink.in/3ThPwNw

IIM :- https://pdlink.in/4nfXDrV

Enroll for FREE & Get Certified ๐ŸŽ“
โค1
Forwarded from Artificial Intelligence
๐Œ๐ข๐œ๐ซ๐จ๐ฌ๐จ๐Ÿ๐ญ ๐…๐‘๐„๐„ ๐‚๐ž๐ซ๐ญ๐ข๐Ÿ๐ข๐œ๐š๐ญ๐ข๐จ๐ง ๐‚๐จ๐ฎ๐ซ๐ฌ๐ž๐ฌ!๐Ÿš€๐Ÿ’ป

Supercharge your career with 5 FREE Microsoft certification courses designed to boost your data analytics skills!

๐„๐ง๐ซ๐จ๐ฅ๐ฅ ๐…๐จ๐ซ ๐…๐‘๐„๐„๐Ÿ‘‡ :-

https://bit.ly/3Vlixcq

- Earn certifications to showcase your skills

Donโ€™t waitโ€”start your journey to success today! โœจ
Data Analytics isn't rocket science. It's just a different language.

Here's a beginner's guide to the world of data analytics:

1) Understand the fundamentals:
- Mathematics
- Statistics
- Technology

2) Learn the tools:
- SQL
- Python
- Excel (yes, it's still relevant!)

3) Understand the data:
- What do you want to measure?
- How are you measuring it?
- What metrics are important to you?

4) Data Visualization:
- A picture is worth a thousand words

5) Practice:
- There's no better way to learn than to do it yourself.

Data Analytics is a valuable skill that can help you make better decisions, understand your audience better, and ultimately grow your business.

It's never too late to start learning!
โค1
๐—™๐—ฟ๐—ฒ๐—ฒ ๐—”๐—œ & ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ๐˜€๐Ÿ˜

Want to explore AI & Machine Learning but donโ€™t know where to start โ€” or donโ€™t want to spend โ‚นโ‚นโ‚น on it?๐Ÿ‘จโ€๐Ÿ’ป

Learn the foundations of AI, machine learning basics, data handling, and real-world use cases in just a few hours.๐Ÿ“Š๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/401SWry

This 100% FREE course is designed just for beginners โ€” whether youโ€™re a student, fresher, or career switcherโœ…๏ธ
Python project-based interview questions for a data analyst role, along with tips and sample answers [Part-1]

1. Data Cleaning and Preprocessing
- Question: Can you walk me through the data cleaning process you followed in a Python-based project?
- Answer: In my project, I used Pandas for data manipulation. First, I handled missing values by imputing them with the median for numerical columns and the most frequent value for categorical columns using fillna(). I also removed outliers by setting a threshold based on the interquartile range (IQR). Additionally, I standardized numerical columns using StandardScaler from Scikit-learn and performed one-hot encoding for categorical variables using Pandas' get_dummies() function.
- Tip: Mention specific functions you used, like dropna(), fillna(), apply(), or replace(), and explain your rationale for selecting each method.

2. Exploratory Data Analysis (EDA)
- Question: How did you perform EDA in a Python project? What tools did you use?
- Answer: I used Pandas for data exploration, generating summary statistics with describe() and checking for correlations with corr(). For visualization, I used Matplotlib and Seaborn to create histograms, scatter plots, and box plots. For instance, I used sns.pairplot() to visually assess relationships between numerical features, which helped me detect potential multicollinearity. Additionally, I applied pivot tables to analyze key metrics by different categorical variables.
- Tip: Focus on how you used visualization tools like Matplotlib, Seaborn, or Plotly, and mention any specific insights you gained from EDA (e.g., data distributions, relationships, outliers).

3. Pandas Operations
- Question: Can you explain a situation where you had to manipulate a large dataset in Python using Pandas?
- Answer: In a project, I worked with a dataset containing over a million rows. I optimized my operations by using vectorized operations instead of Python loops. For example, I used apply() with a lambda function to transform a column, and groupby() to aggregate data by multiple dimensions efficiently. I also leveraged merge() to join datasets on common keys.
- Tip: Emphasize your understanding of efficient data manipulation with Pandas, mentioning functions like groupby(), merge(), concat(), or pivot().

4. Data Visualization
- Question: How do you create visualizations in Python to communicate insights from data?
- Answer: I primarily use Matplotlib and Seaborn for static plots and Plotly for interactive dashboards. For example, in one project, I used sns.heatmap() to visualize the correlation matrix and sns.barplot() for comparing categorical data. For time-series data, I used Matplotlib to create line plots that displayed trends over time. When presenting the results, I tailored visualizations to the audience, ensuring clarity and simplicity.
- Tip: Mention the specific plots you created and how you customized them (e.g., adding labels, titles, adjusting axis scales). Highlight the importance of clear communication through visualization.

Like this post if you want next part of this interview series ๐Ÿ‘โค๏ธ
โค4