Forwarded from Python Projects & Resources
๐ฃ๐ฟ๐ฒ๐ฝ๐ฎ๐ฟ๐ถ๐ป๐ด ๐ณ๐ผ๐ฟ ๐ง๐ฒ๐ฐ๐ต ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ? ๐๐ฒ๐ฟ๐ฒโ๐ ๐ฌ๐ผ๐๐ฟ ๐ฆ๐๐ฒ๐ฝ-๐ฏ๐-๐ฆ๐๐ฒ๐ฝ ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ ๐๐ผ ๐๐ฟ๐ฎ๐ฐ๐ธ ๐ฃ๐ฟ๐ผ๐ฑ๐๐ฐ๐-๐๐ฎ๐๐ฒ๐ฑ ๐๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐!๐
Landing your dream tech job takes more than just writing code โ it requires structured preparation across key areas๐จโ๐ป
This roadmap will guide you from zero to offer letter! ๐ผ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GdfTS2
This plan works if you stay consistent๐ชโ ๏ธ
Landing your dream tech job takes more than just writing code โ it requires structured preparation across key areas๐จโ๐ป
This roadmap will guide you from zero to offer letter! ๐ผ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GdfTS2
This plan works if you stay consistent๐ชโ ๏ธ
โค1
Power BI Cheat Sheet โ
This Power BI cheatsheet is designed to be your quick reference guide for creating impactful reports and dashboards. Whether youโre a beginner exploring the basics or an experienced developer looking for a handy resource, this cheatsheet covers essential topics.
1. Connecting Data
- Import Data: *Home > Get Data > Select Data Source*
- Direct Query: *Home > Get Data > Select Data Source > Direct Query*
2. Data Transformation
- Power Query Editor: *Home > Transform Data*
- Remove Columns: *Transform > Remove Columns*
- Split Columns: *Transform > Split Column by Delimiter*
- Replace Values: *Transform > Replace Values*
3. Data Modeling
- Create Relationships: *Model > Manage Relationships > New*
- Edit Relationships: *Model > Manage Relationships > Edit*
4. DAX Calculations
- New Measure: *Modeling > New Measure*
- Common DAX Functions:
- SUM:
- AVERAGE:
- IF:
- COUNTROWS:
- CALCULATE:
5. Creating Visuals
- Select Visualization: *Visualizations Pane > Select Visual Type*
- Bar Chart: *Bar Chart Icon*
- Pie Chart: *Pie Chart Icon*
- Map Visual: *Map Icon*
6. Formatting Visuals
- Change Colors: *Format > Data Colors*
- Customize Titles: *Format > Title > Text*
- Adjust Axis: *Format > Y-Axis / X-Axis*
7. Filters
- Visual Level Filter: *Filter Pane > Add Filter for Selected Visual*
- Page Level Filter: *Filter Pane > Add Filter for Entire Page*
- Report Level Filter: *Filter Pane > Add Filter for Entire Report*
8. Slicers
- Add Slicer: *Visualizations > Slicer Icon*
- Customize Slicer: *Format > Edit Interactions*
9. Drillthrough
- Add Drillthrough: *Pages > Right Click on Field > Drillthrough*
- Back Button: *Insert > Button > Back Button*
10. Publishing & Sharing
- Publish Report: *Home > Publish > Select Workspace*
- Share Report: *File > Share > Publish to Web or Power BI Service*
11. Dashboards
- Create Dashboard: *Power BI Service > New Dashboard*
- Pin Visuals: *Pin Icon on Visual > Pin to Dashboard*
12. Export Options
- Export to PDF: *File > Export > PDF*
- Export Data: *Visual Options > Export Data*
Complete Checklist to become a Data Analyst: https://dataanalytics.beehiiv.com/p/data
You can refer these Power BI Interview Resources to learn more
๐๐
https://t.iss.one/DataSimplifier
Like this post if you need more useful resources ๐โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
This Power BI cheatsheet is designed to be your quick reference guide for creating impactful reports and dashboards. Whether youโre a beginner exploring the basics or an experienced developer looking for a handy resource, this cheatsheet covers essential topics.
1. Connecting Data
- Import Data: *Home > Get Data > Select Data Source*
- Direct Query: *Home > Get Data > Select Data Source > Direct Query*
2. Data Transformation
- Power Query Editor: *Home > Transform Data*
- Remove Columns: *Transform > Remove Columns*
- Split Columns: *Transform > Split Column by Delimiter*
- Replace Values: *Transform > Replace Values*
3. Data Modeling
- Create Relationships: *Model > Manage Relationships > New*
- Edit Relationships: *Model > Manage Relationships > Edit*
4. DAX Calculations
- New Measure: *Modeling > New Measure*
- Common DAX Functions:
- SUM:
SUM(table[column])- AVERAGE:
AVERAGE(table[column])- IF:
IF(condition, true_value, false_value)- COUNTROWS:
COUNTROWS(table)- CALCULATE:
CALCULATE(expression, filter)5. Creating Visuals
- Select Visualization: *Visualizations Pane > Select Visual Type*
- Bar Chart: *Bar Chart Icon*
- Pie Chart: *Pie Chart Icon*
- Map Visual: *Map Icon*
6. Formatting Visuals
- Change Colors: *Format > Data Colors*
- Customize Titles: *Format > Title > Text*
- Adjust Axis: *Format > Y-Axis / X-Axis*
7. Filters
- Visual Level Filter: *Filter Pane > Add Filter for Selected Visual*
- Page Level Filter: *Filter Pane > Add Filter for Entire Page*
- Report Level Filter: *Filter Pane > Add Filter for Entire Report*
8. Slicers
- Add Slicer: *Visualizations > Slicer Icon*
- Customize Slicer: *Format > Edit Interactions*
9. Drillthrough
- Add Drillthrough: *Pages > Right Click on Field > Drillthrough*
- Back Button: *Insert > Button > Back Button*
10. Publishing & Sharing
- Publish Report: *Home > Publish > Select Workspace*
- Share Report: *File > Share > Publish to Web or Power BI Service*
11. Dashboards
- Create Dashboard: *Power BI Service > New Dashboard*
- Pin Visuals: *Pin Icon on Visual > Pin to Dashboard*
12. Export Options
- Export to PDF: *File > Export > PDF*
- Export Data: *Visual Options > Export Data*
Complete Checklist to become a Data Analyst: https://dataanalytics.beehiiv.com/p/data
You can refer these Power BI Interview Resources to learn more
๐๐
https://t.iss.one/DataSimplifier
Like this post if you need more useful resources ๐โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค2
Forwarded from Artificial Intelligence
๐ช๐ฎ๐ป๐ ๐๐ผ ๐๐๐ถ๐น๐ฑ ๐ฎ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฃ๐ผ๐ฟ๐๐ณ๐ผ๐น๐ถ๐ผ ๐ง๐ต๐ฎ๐ ๐๐ฒ๐๐ ๐ฌ๐ผ๐ ๐๐ถ๐ฟ๐ฒ๐ฑ?๐
If youโre just starting out in data analytics and wondering how to stand out โ real-world projects are the key๐
No recruiter is impressed by โjust theory.โ What they want to see? Actionable proof of your skills๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ezeIc9
Show recruiters that you donโt just โknowโ tools โ you use them to solve problemsโ ๏ธ
If youโre just starting out in data analytics and wondering how to stand out โ real-world projects are the key๐
No recruiter is impressed by โjust theory.โ What they want to see? Actionable proof of your skills๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ezeIc9
Show recruiters that you donโt just โknowโ tools โ you use them to solve problemsโ ๏ธ
โค1
Python Programming Interview Questions for Entry Level Data Analyst
1. What is Python, and why is it popular in data analysis?
2. Differentiate between Python 2 and Python 3.
3. Explain the importance of libraries like NumPy and Pandas in data analysis.
4. How do you read and write data from/to files using Python?
5. Discuss the role of Matplotlib and Seaborn in data visualization with Python.
6. What are list comprehensions, and how do you use them in Python?
7. Explain the concept of object-oriented programming (OOP) in Python.
8. Discuss the significance of libraries like SciPy and Scikit-learn in data analysis.
9. How do you handle missing or NaN values in a DataFrame using Pandas?
10. Explain the difference between loc and iloc in Pandas DataFrame indexing.
11. Discuss the purpose and usage of lambda functions in Python.
12. What are Python decorators, and how do they work?
13. How do you handle categorical data in Python using the Pandas library?
14. Explain the concept of data normalization and its importance in data preprocessing.
15. Discuss the role of regular expressions (regex) in data cleaning with Python.
16. What are Python virtual environments, and why are they useful?
17. How do you handle outliers in a dataset using Python?
18. Explain the usage of the map and filter functions in Python.
19. Discuss the concept of recursion in Python programming.
20. How do you perform data analysis and visualization using Jupyter Notebooks?
Python Interview Q&A: https://topmate.io/coding/898340
Like for more โค๏ธ
ENJOY LEARNING ๐๐
1. What is Python, and why is it popular in data analysis?
2. Differentiate between Python 2 and Python 3.
3. Explain the importance of libraries like NumPy and Pandas in data analysis.
4. How do you read and write data from/to files using Python?
5. Discuss the role of Matplotlib and Seaborn in data visualization with Python.
6. What are list comprehensions, and how do you use them in Python?
7. Explain the concept of object-oriented programming (OOP) in Python.
8. Discuss the significance of libraries like SciPy and Scikit-learn in data analysis.
9. How do you handle missing or NaN values in a DataFrame using Pandas?
10. Explain the difference between loc and iloc in Pandas DataFrame indexing.
11. Discuss the purpose and usage of lambda functions in Python.
12. What are Python decorators, and how do they work?
13. How do you handle categorical data in Python using the Pandas library?
14. Explain the concept of data normalization and its importance in data preprocessing.
15. Discuss the role of regular expressions (regex) in data cleaning with Python.
16. What are Python virtual environments, and why are they useful?
17. How do you handle outliers in a dataset using Python?
18. Explain the usage of the map and filter functions in Python.
19. Discuss the concept of recursion in Python programming.
20. How do you perform data analysis and visualization using Jupyter Notebooks?
Python Interview Q&A: https://topmate.io/coding/898340
Like for more โค๏ธ
ENJOY LEARNING ๐๐
โค1
๐ช๐ฎ๐ป๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ป-๐๐ฒ๐บ๐ฎ๐ป๐ฑ ๐ง๐ฒ๐ฐ๐ต ๐ฆ๐ธ๐ถ๐น๐น๐ โ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ โ ๐๐ถ๐ฟ๐ฒ๐ฐ๐๐น๐ ๐ณ๐ฟ๐ผ๐บ ๐๐ผ๐ผ๐ด๐น๐ฒ?๐
Whether youโre a student, job seeker, or just hungry to upskill โ these 5 beginner-friendly courses are your golden ticket๐๏ธ
No fluff. No fees. Just career-boosting knowledge and certificates that make your resume popโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42vL6br
Enjoy Learning โ ๏ธ
Whether youโre a student, job seeker, or just hungry to upskill โ these 5 beginner-friendly courses are your golden ticket๐๏ธ
No fluff. No fees. Just career-boosting knowledge and certificates that make your resume popโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42vL6br
Enjoy Learning โ ๏ธ
โค1
Machine Learning isn't easy!
Itโs the field that powers intelligent systems and predictive models.
To truly master Machine Learning, focus on these key areas:
0. Understanding the Basics of Algorithms: Learn about linear regression, decision trees, and k-nearest neighbors to build a solid foundation.
1. Mastering Data Preprocessing: Clean, normalize, and handle missing data to prepare your datasets for training.
2. Learning Supervised Learning Techniques: Dive deep into classification and regression models, such as SVMs, random forests, and logistic regression.
3. Exploring Unsupervised Learning: Understand clustering techniques (K-means, hierarchical) and dimensionality reduction (PCA, t-SNE).
4. Mastering Model Evaluation: Use techniques like cross-validation, confusion matrices, ROC curves, and F1 scores to assess model performance.
5. Understanding Overfitting and Underfitting: Learn how to balance bias and variance to build robust models.
6. Optimizing Hyperparameters: Use grid search, random search, and Bayesian optimization to fine-tune your models for better performance.
7. Diving into Neural Networks and Deep Learning: Explore deep learning with frameworks like TensorFlow and PyTorch to create advanced models like CNNs and RNNs.
8. Working with Natural Language Processing (NLP): Master text data, sentiment analysis, and techniques like word embeddings and transformers.
9. Staying Updated with New Techniques: Machine learning evolves rapidlyโkeep up with emerging models, techniques, and research.
Machine learning is about learning from data and improving models over time.
๐ก Embrace the challenges of building algorithms, experimenting with data, and solving complex problems.
โณ With time, practice, and persistence, youโll develop the expertise to create systems that learn, predict, and adapt.
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
#datascience
Itโs the field that powers intelligent systems and predictive models.
To truly master Machine Learning, focus on these key areas:
0. Understanding the Basics of Algorithms: Learn about linear regression, decision trees, and k-nearest neighbors to build a solid foundation.
1. Mastering Data Preprocessing: Clean, normalize, and handle missing data to prepare your datasets for training.
2. Learning Supervised Learning Techniques: Dive deep into classification and regression models, such as SVMs, random forests, and logistic regression.
3. Exploring Unsupervised Learning: Understand clustering techniques (K-means, hierarchical) and dimensionality reduction (PCA, t-SNE).
4. Mastering Model Evaluation: Use techniques like cross-validation, confusion matrices, ROC curves, and F1 scores to assess model performance.
5. Understanding Overfitting and Underfitting: Learn how to balance bias and variance to build robust models.
6. Optimizing Hyperparameters: Use grid search, random search, and Bayesian optimization to fine-tune your models for better performance.
7. Diving into Neural Networks and Deep Learning: Explore deep learning with frameworks like TensorFlow and PyTorch to create advanced models like CNNs and RNNs.
8. Working with Natural Language Processing (NLP): Master text data, sentiment analysis, and techniques like word embeddings and transformers.
9. Staying Updated with New Techniques: Machine learning evolves rapidlyโkeep up with emerging models, techniques, and research.
Machine learning is about learning from data and improving models over time.
๐ก Embrace the challenges of building algorithms, experimenting with data, and solving complex problems.
โณ With time, practice, and persistence, youโll develop the expertise to create systems that learn, predict, and adapt.
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
#datascience
โค1
Forwarded from Python Projects & Resources
๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ ๐๐๐๐ ๐ฅ๐ฒ๐น๐ฒ๐ฎ๐๐ฒ๐ฑ ๐ฑ ๐๐ฅ๐๐ ๐ง๐ฒ๐ฐ๐ต ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฌ๐ผ๐ ๐๐ฎ๐ปโ๐ ๐ ๐ถ๐๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ!๐
๐จ Harvard just dropped 5 FREE online tech courses โ no fees, no catches!๐
Whether youโre just starting out or upskilling for a tech career, this is your chance to learn from one of the worldโs top universities โ for FREE. ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4eA368I
๐กLearn at your own pace, earn certificates, and boost your resumeโ ๏ธ
๐จ Harvard just dropped 5 FREE online tech courses โ no fees, no catches!๐
Whether youโre just starting out or upskilling for a tech career, this is your chance to learn from one of the worldโs top universities โ for FREE. ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4eA368I
๐กLearn at your own pace, earn certificates, and boost your resumeโ ๏ธ
โค1
๐จ๐ฝ๐๐ธ๐ถ๐น๐น ๐๐ฎ๐๐: ๐๐ฒ๐ฎ๐ฟ๐ป ๐ง๐ฒ๐ฐ๐ต ๐ฆ๐ธ๐ถ๐น๐น๐ ๐๐ถ๐๐ต ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐-๐๐ฎ๐๐ฒ๐ฑ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ถ๐ป ๐๐๐๐ ๐ฏ๐ฌ ๐๐ฎ๐๐!๐
Level up your tech skills in just 30 days! ๐ป๐จโ๐
Whether youโre a beginner, student, or planning a career switch, this platform offers project-based courses๐จโ๐ปโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3U2nBl4
Start today and youโll be 10x more confident by the end of it!โ ๏ธ
Level up your tech skills in just 30 days! ๐ป๐จโ๐
Whether youโre a beginner, student, or planning a career switch, this platform offers project-based courses๐จโ๐ปโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3U2nBl4
Start today and youโll be 10x more confident by the end of it!โ ๏ธ
โค1
SQL Interview Ques & ANS ๐ฅ
โค1
๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐โ๐ ๐๐ฅ๐๐ ๐๐ ๐๐ด๐ฒ๐ป๐๐ ๐๐ผ๐๐ฟ๐๐ฒ โ ๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ผ๐ ๐๐ต๐ฒ ๐๐๐๐๐ฟ๐ฒ ๐ผ๐ณ ๐๐ ๐ช๐ผ๐ฟ๐ธ๐๐
๐จ Microsoft just dropped a brand-new FREE course on AI Agents โ and itโs a must-watch!๐ฒ
If youโve ever wondered how AI copilots, autonomous agents, and decision-making systems actually work๐จโ๐๐ซ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kuGLLe
This course is your launchpad into the future of artificial intelligenceโ ๏ธ
๐จ Microsoft just dropped a brand-new FREE course on AI Agents โ and itโs a must-watch!๐ฒ
If youโve ever wondered how AI copilots, autonomous agents, and decision-making systems actually work๐จโ๐๐ซ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kuGLLe
This course is your launchpad into the future of artificial intelligenceโ ๏ธ
โค1