✨Seeing the Forest and the Trees: Query-Aware Tokenizer for Long-Video Multimodal Language Models
📝 Summary:
QTSplus is a query-aware token selector for long-video multimodal language models. It dynamically selects the most important visual tokens based on a text query, significantly compressing vision data and reducing latency. This method maintains overall accuracy and enhances temporal understanding ...
🔹 Publication Date: Published on Nov 14
🔹 Paper Links:
• arXiv Page: https://huggingface.co/collections/AlpachinoNLP/qtsplus
• PDF: https://arxiv.org/pdf/2511.11910
• Project Page: https://qtsplus.github.io/
• Github: https://github.com/Siyou-Li/QTSplus
🔹 Models citing this paper:
• https://huggingface.co/AlpachinoNLP/QTSplus-3B
• https://huggingface.co/AlpachinoNLP/QTSplus-3B-FT
✨ Spaces citing this paper:
• https://huggingface.co/spaces/AlpachinoNLP/QTSplus-3B
==================================
For more data science resources:
✓ https://t.iss.one/DataScienceT
#MultimodalAI #VideoAI #LLM #Tokenization #ComputerVision
📝 Summary:
QTSplus is a query-aware token selector for long-video multimodal language models. It dynamically selects the most important visual tokens based on a text query, significantly compressing vision data and reducing latency. This method maintains overall accuracy and enhances temporal understanding ...
🔹 Publication Date: Published on Nov 14
🔹 Paper Links:
• arXiv Page: https://huggingface.co/collections/AlpachinoNLP/qtsplus
• PDF: https://arxiv.org/pdf/2511.11910
• Project Page: https://qtsplus.github.io/
• Github: https://github.com/Siyou-Li/QTSplus
🔹 Models citing this paper:
• https://huggingface.co/AlpachinoNLP/QTSplus-3B
• https://huggingface.co/AlpachinoNLP/QTSplus-3B-FT
✨ Spaces citing this paper:
• https://huggingface.co/spaces/AlpachinoNLP/QTSplus-3B
==================================
For more data science resources:
✓ https://t.iss.one/DataScienceT
#MultimodalAI #VideoAI #LLM #Tokenization #ComputerVision
huggingface.co
QTSplus - a AlpachinoNLP Collection
Official models and datasets for paper(https://arxiv.org/abs/2511.11910)