✨Φeat: Physically-Grounded Feature Representation
📝 Summary:
Φeat is a new self-supervised visual backbone that captures material identity like reflectance and mesostructure. It learns robust features invariant to external physical factors such as shape and lighting, promoting physics-aware perception.
🔹 Publication Date: Published on Nov 14
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2511.11270
• PDF: https://arxiv.org/pdf/2511.11270
==================================
For more data science resources:
✓ https://t.iss.one/DataScienceT
#ComputerVision #SelfSupervisedLearning #DeepLearning #FeatureLearning #PhysicsAwareAI
📝 Summary:
Φeat is a new self-supervised visual backbone that captures material identity like reflectance and mesostructure. It learns robust features invariant to external physical factors such as shape and lighting, promoting physics-aware perception.
🔹 Publication Date: Published on Nov 14
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2511.11270
• PDF: https://arxiv.org/pdf/2511.11270
==================================
For more data science resources:
✓ https://t.iss.one/DataScienceT
#ComputerVision #SelfSupervisedLearning #DeepLearning #FeatureLearning #PhysicsAwareAI