ML Research Hub
32.6K subscribers
3.76K photos
192 videos
23 files
4.03K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
@CodeProgrammer Data Science Cheat Sheets.zip
596.3 MB
Data Science Cheat Sheets
Quick help to make a data scientist's life easier

https://t.iss.one/codeprogrammer 🔒

💡 #deeplearning #AI #ML #python
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
Please open Telegram to view this post
VIEW IN TELEGRAM
👍32
🎉💯2024 Highly demanded Top 100+ IT Training courses FREE Giveaway in Networking, Project Management, Cloud and Cyber security including #CCNA 200-301, #CCNP 350-401 #Comptia, #PMP, #AWS, #Azure #Python, #Excel, #AI, #Google courses...... ⬇️📕

Get now & start whenever you want! Don't miss this chance to kickstart your IT career in 2024!

🔗👨‍💻Free CCNA Training Course: https://bit.ly/3BoYEdH
🔗🗒️Enroll Free Online Course: https://bit.ly/4dru404
🔗📝Download Free #IT Study Materials:https://bit.ly/3Y213Uj

🔗📲Contact for 1v1 IT Certs Exam Help: https://wa.link/k0vy3x
🌐📚 JOIN IT Study GROUP to Get Madness Discount 👇: https://chat.whatsapp.com/HqzBlMaOPci0wYvkEtcCDa

🔎Follow Social Media for Free e-Book:
https://linktr.ee/SPOTOSocialMedia
👍21
Please open Telegram to view this post
VIEW IN TELEGRAM
👍61
DeepSeek-V3 Technical Report

We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in #DeepSeek V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at https://github.com/deepseek-ai/DeepSeek-V3.

Paper: https://arxiv.org/pdf/2412.19437v1.pdf

Code: https://github.com/deepseek-ai/deepseek-v3

#aiagents #ai #llm #ml #machinelearning #python

https://t.iss.one/DataScienceT 💚
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21
MiniCPM-V: A GPT-4V Level MLLM on Your Phone

The recent surge of Multimodal Large Language Models (MLLMs) has fundamentally reshaped the landscape of #AI research and industry, shedding light on a promising path toward the next AI milestone. However, significant challenges remain preventing MLLMs from being practical in real-world applications. The most notable challenge comes from the huge cost of running an MLLM with a massive number of parameters and extensive computation. As a result, most MLLMs need to be deployed on high-performing cloud servers, which greatly limits their application scopes such as mobile, offline, energy-sensitive, and privacy-protective scenarios. In this work, we present MiniCPM-V, a series of efficient #MLLMs deployable on end-side devices. By integrating the latest MLLM techniques in architecture, pretraining and alignment, the latest MiniCPM-Llama3-V 2.5 has several notable features: (1) Strong performance, outperforming GPT-4V-1106, Gemini Pro and Claude 3 on OpenCompass, a comprehensive evaluation over 11 popular benchmarks, (2) strong #OCR capability and 1.8M pixel high-resolution #image perception at any aspect ratio, (3) trustworthy behavior with low hallucination rates, (4) multilingual support for 30+ languages, and (5) efficient deployment on mobile phones. More importantly, MiniCPM-V can be viewed as a representative example of a promising trend: The model sizes for achieving usable (e.g., GPT-4V) level performance are rapidly decreasing, along with the fast growth of end-side computation capacity. This jointly shows that GPT-4V level MLLMs deployed on end devices are becoming increasingly possible, unlocking a wider spectrum of real-world AI applications in the near future.

Paper: https://arxiv.org/pdf/2408.01800v1.pdf

Codes:
https://github.com/OpenBMB/MiniCPM-o
https://github.com/openbmb/minicpm-v

Datasets: Video-MME

#MachineLearning #DeepLearning #BigData #Datascience #ML #HealthTech #DataVisualization #ArtificialInteligence #SoftwareEngineering #GenAI #deeplearning #ChatGPT #OpenAI #python #AI #keras #SQL #Statistics

https://t.iss.one/DataScienceT ❤️
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Search-o1: Agentic Search-Enhanced Large Reasoning Models

Large reasoning models (LRMs) like OpenAI-o1 have demonstrated impressive long stepwise reasoning capabilities through large-scale reinforcement learning. However, their extended reasoning processes often suffer from knowledge insufficiency, leading to frequent uncertainties and potential errors. To address this limitation, we introduce \textbf{Search-o1}, a framework that enhances LRMs with an agentic retrieval-augmented generation (RAG) mechanism and a Reason-in-Documents module for refining retrieved documents. Search-o1 integrates an agentic search workflow into the reasoning process, enabling dynamic retrieval of external knowledge when LRMs encounter uncertain knowledge points. Additionally, due to the verbose nature of retrieved documents, we design a separate Reason-in-Documents module to deeply analyze the retrieved information before injecting it into the reasoning chain, minimizing noise and preserving coherent reasoning flow. Extensive experiments on complex reasoning tasks in science, mathematics, and coding, as well as six open-domain QA benchmarks, demonstrate the strong performance of Search-o1. This approach enhances the trustworthiness and applicability of LRMs in complex reasoning tasks, paving the way for more reliable and versatile intelligent systems.

paper: https://arxiv.org/pdf/2501.05366v1.pdf

Code: https://github.com/sunnynexus/search-o1

Datasets: Natural Questions - TriviaQA - MATH - HotpotQA - GPQA - Bamboogle

#Search_o1 #LargeReasoningModels #AgenticRAG #ReasonInDocuments #DynamicKnowledgeRetrieval #ComplexReasoning #ScienceMathCoding #OpenDomainQA #TrustworthyAI #IntelligentSystems #python

https://t.iss.one/DataScienceT 😱
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31
🚀 Boost Your IT Exam Prep with SPOTO's FREE Study Materials! 🎉

💡 Ready to Pass Your IT Exam?
SPOTO is here to help you succeed! Get SPOTO FREE IT study materials to jumpstart your certification journey. Whether you're preparing for #Cisco, #AWS, #PMP, #Python, #Excel, #Google, #Microsoft, or other certifications, we've got you covered.

🔗🎒Download Free IT Certs Exam E-book: https://bit.ly/4fJSoLP

🔗👩‍💻Test Your IT Skills for Free: https://bit.ly/3PoKH39

🔗📝Download Free Cloud Certs Study Materials:https://bit.ly/4gI4KWk

🔗📲Contact for 1v1 IT Certs Exam Help: https://wa.link/k0vy3x
🌐📚 JOIN IT Study GROUP👇: https://chat.whatsapp.com/E3Vkxa19HPO9ZVkWslBO8s
2
Some people asked me about a resource for learning about Transformers.

Here's a good one I am sharing again -- it covers just about everything you need to know.

brandonrohrer.com/transformers

Amazing stuff. It's totally worth your weekend.

#Transformers #DeepLearning #NLP #AI #MachineLearning #SelfAttention #DataScience #Technology #Python #LearningResource


https://t.iss.one/CodeProgrammer
👍5
Executable Code Actions Elicit Better LLM Agents

1 Feb 2024 · Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, Heng Ji

Large Language Model (LLM) agents, capable of performing a broad range of actions, such as invoking tools and controlling robots, show great potential in tackling real-world challenges. LLM agents are typically prompted to produce actions by generating #JSON or text in a pre-defined format, which is usually limited by constrained action space (e.g., the scope of pre-defined tools) and restricted flexibility (e.g., inability to compose multiple tools). This work proposes to use executable Python code to consolidate LLM agents' actions into a unified action space (CodeAct). Integrated with a Python interpreter, CodeAct can execute code actions and dynamically revise prior actions or emit new actions upon new observations through multi-turn interactions. Our extensive analysis of 17 LLMs on API-Bank and a newly curated benchmark shows that CodeAct outperforms widely used alternatives (up to 20% higher success rate). The encouraging performance of CodeAct motivates us to build an open-source #LLM agent that interacts with environments by executing interpretable code and collaborates with users using natural language. To this end, we collect an instruction-tuning dataset CodeActInstruct that consists of 7k multi-turn interactions using CodeAct. We show that it can be used with existing data to improve models in agent-oriented tasks without compromising their general capability. CodeActAgent, finetuned from Llama2 and Mistral, is integrated with #Python interpreter and uniquely tailored to perform sophisticated tasks (e.g., model training) using existing libraries and autonomously self-debug.


Paper: https://arxiv.org/pdf/2402.01030v4.pdf

Codes:
https://github.com/epfllm/megatron-llm
https://github.com/xingyaoww/code-act

Datasets: MMLU - GSM8K - HumanEval - MATH

https://t.iss.one/DataScienceT ⚠️
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍3🔥1👏1
📚 Become a professional data scientist with these 17 resources!



1️⃣ Python libraries for machine learning

◀️ Introducing the best Python tools and packages for building ML models.



2️⃣ Deep Learning Interactive Book

◀️ Learn deep learning concepts by combining text, math, code, and images.



3️⃣ Anthology of Data Science Learning Resources

◀️ The best courses, books, and tools for learning data science.



4️⃣ Implementing algorithms from scratch

◀️ Coding popular ML algorithms from scratch



5️⃣ Machine Learning Interview Guide

◀️ Fully prepared for job interviews



6️⃣ Real-world machine learning projects

◀️ Learning how to build and deploy models.



7️⃣ Designing machine learning systems

◀️ How to design a scalable and stable ML system.



8️⃣ Machine Learning Mathematics

◀️ Basic mathematical concepts necessary to understand machine learning.



9️⃣ Introduction to Statistical Learning

◀️ Learn algorithms with practical examples.



1️⃣ Machine learning with a probabilistic approach

◀️ Better understanding modeling and uncertainty with a statistical perspective.



1️⃣ UBC Machine Learning

◀️ Deep understanding of machine learning concepts with conceptual teaching from one of the leading professors in the field of ML,



1️⃣ Deep Learning with Andrew Ng

◀️ A strong start in the world of neural networks, CNNs and RNNs.



1️⃣ Linear Algebra with 3Blue1Brown

◀️ Intuitive and visual teaching of linear algebra concepts.



🔴 Machine Learning Course

◀️ A combination of theory and practical training to strengthen ML skills.



1️⃣ Mathematical Optimization with Python

◀️ You will learn the basic concepts of optimization with Python code.



1️⃣ Explainable models in machine learning

◀️ Making complex models understandable.



⚫️ Data Analysis with Python

◀️ Data analysis skills using Pandas and NumPy libraries.


#DataScience #MachineLearning #DeepLearning #Python #AI #MLProjects #DataAnalysis #ExplainableAI #100DaysOfCode #TechEducation #MLInterviewPrep #NeuralNetworks #MathForML #Statistics #Coding #AIForEveryone #PythonForDataScience



⚡️ BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
👍102
🎓 2025 Top IT CertificationFree Study Materials Are Here!

🔥Whether you're preparing for #Cisco #AWS #PMP #Python #Excel #Google #Microsoft #AI or any other in-demand certification – SPOTO has got you covered!

📘 Download the FREE IT Certs Exam E-book:
👉 https://bit.ly/4lNVItV
🧠 Test Your IT Skills for FREE:
👉 https://bit.ly/4imEjW5
☁️ Download Free AI Materials :
👉 https://bit.ly/3F3lc5B

📞 Need 1-on-1 IT Exam Help? Contact Now:
👉 https://wa.link/k0vy3x
🌐 Join Our IT Study Group for Daily Updates & Tips:
👉 https://chat.whatsapp.com/E3Vkxa19HPO9ZVkWslBO8s
3