PyData Careers
20.7K subscribers
196 photos
4 videos
26 files
341 links
Python Data Science jobs, interview tips, and career insights for aspiring professionals.
Download Telegram
NUMPY FOR DS.pdf
4.5 MB
Let's start at the top...

NumPy contains a broad array of functionality for fast numerical & mathematical operations in Python

The core data-structure within #NumPy is an ndArray (or n-dimensional array)

Behind the scenes - much of the NumPy functionality is written in the programming language C

NumPy functionality is used in other popular #Python packages including #Pandas, #Matplotlib, & #scikitlearn!

✉️ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍1
Question 13 (Intermediate):
In NumPy, what is the difference between np.array([1, 2, 3]) and np.array([[1, 2, 3]])?

A) The first is a 1D array, the second is a 2D row vector
B) The first is faster to compute
C) The second automatically transposes the data
D) They are identical in memory usage

#Python #NumPy #Arrays #DataScience

By: https://t.iss.one/DataScienceQ
3
🚀 Comprehensive Guide: How to Prepare for a Data Analyst Python Interview – 350 Most Common Interview Questions

Are you ready: https://hackmd.io/@husseinsheikho/pandas-interview

#DataAnalysis #PythonInterview #DataAnalyst #Pandas #NumPy #Matplotlib #Seaborn #SQL #DataCleaning #Visualization #MachineLearning #Statistics #InterviewPrep


✉️ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
3
Interview question :
What is NumPy, and why is it essential for scientific computing in Python?

Interview question :
How do arrays in NumPy differ from Python lists?

Interview question :
What is the purpose of ndarray in NumPy?

Interview question :
How can you create a 2D array using NumPy?

Interview question :
What does shape represent in a NumPy array?

Interview question :
How do you perform element-wise operations on NumPy arrays?

Interview question :
What is broadcasting in NumPy, and how does it work?

Interview question :
How do you reshape a NumPy array using reshape()?

Interview question :
What is the difference between copy() and view() in NumPy?

Interview question :
How do you concatenate two NumPy arrays along a specific axis?

Interview question :
What is the role of axis parameter in NumPy functions like sum(), mean(), etc.?

Interview question :
How do you find the maximum and minimum values in a NumPy array?

Interview question :
What are ufuncs in NumPy, and give an example?

Interview question :
How do you sort a NumPy array using np.sort()?

Interview question :
What is the use of np.where() in conditional indexing?

Interview question :
How do you generate random numbers using NumPy?

Interview question :
What is the difference between np.random.rand() and np.random.randn()?

Interview question :
How do you load data from a file into a NumPy array?

Interview question :
What is vectorization in NumPy, and why is it important?

Interview question :
How do you calculate the dot product of two arrays in NumPy?

#️⃣ tags: #NumPy #Python #ScientificComputing #Array #ndarray #ElementWiseOperations #Broadcasting #Reshape #CopyView #Concatenation #AxisParameter #MaximumMinimum #ufuncs #Sorting #ConditionalIndexing #RandomNumbers #DataLoading #Vectorization #DotProduct

By: t.iss.one/DataScienceQ 🚀
⁉️ Interview question 
What happens when you perform arithmetic operations between a NumPy array and a scalar value, and how does NumPy handle the broadcasting mechanism in such cases?

The operation is applied element-wise, and the scalar is broadcasted to match the shape of the array, enabling efficient computation without explicit loops.

#️⃣ tags: #numpy #python #arrayoperations #broadcasting #interviewquestion

By: t.iss.one/DataScienceQ 🚀
⁉️ Interview question 
Given the following NumPy code snippet, what will be the output and why?

import numpy as np

arr = np.array([[1, 2], [3, 4]])
result = arr + 5
print(result)

The output will be a 2x2 array where each element is incremented by 5: [[6, 7], [8, 9]]. This happens because NumPy automatically broadcasts the scalar value 5 to match the shape of the array, performing element-wise addition.

#️⃣ tags: #numpy #python #arrayaddition #broadcasting #interviewquestion #programming

By: t.iss.one/DataScienceQ 🚀
⁉️ Interview question
What will be the output of the following NumPy code snippet?

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
result = arr[1:4:2] + arr[::2]
print(result)


<details><summary>Click to reveal</summary>Answer: [3 5]</details>

#️⃣ tags: #numpy #python #interviewquestion #arrayoperations #slicing #broadcasting

By: @DataScienceQ 🚀
⁉️ Interview question
What does the following NumPy code return?

import numpy as np

a = np.arange(6).reshape(2, 3)
b = np.array([[1, 2, 3], [4, 5, 6]])
result = np.dot(a, b.T)
print(result)


<details><summary>Click to reveal</summary>Answer: [[ 8 20] [17 47]]</details>

#️⃣ tags: #numpy #python #interviewquestion #arrayoperations #matrixmultiplication #dotproduct

By: @DataScienceQ 🚀
#numpy #python #programming #question #array #basic

Write a Python code snippet using NumPy to create a 2D array of shape (3, 4) filled with zeros. Then, modify the element at position (1, 2) to be 5. Print the resulting array.

import numpy as np

# Create a 2D array of zeros with shape (3, 4)
arr = np.zeros((3, 4))

# Modify the element at position (1, 2) to be 5
arr[1, 2] = 5

# Print the resulting array
print(arr)

Output:
[[0. 0. 0. 0.]
[0. 0. 5. 0.]
[0. 0. 0. 0.]]

By: @DataScienceQ 🚀
2
#numpy #python #programming #question #array #intermediate

Write a Python program using NumPy to perform the following tasks:

1. Create a 1D array of integers from 1 to 10.
2. Reshape it into a 2D array of shape (2, 5).
3. Compute the sum of each row and store it in a new array.
4. Find the indices of elements greater than 7 in the original 1D array.
5. Print the resulting 2D array, the row sums, and the indices.

import numpy as np

# 1. Create a 1D array from 1 to 10
arr_1d = np.arange(1, 11)

# 2. Reshape into a 2D array of shape (2, 5)
arr_2d = arr_1d.reshape(2, 5)

# 3. Compute the sum of each row
row_sums = np.sum(arr_2d, axis=1)

# 4. Find indices of elements greater than 7 in the original 1D array
indices_greater_than_7 = np.where(arr_1d > 7)[0]

# 5. Print results
print("2D Array:\n", arr_2d)
print("Row sums:", row_sums)
print("Indices of elements > 7:", indices_greater_than_7)

Output:
2D Array:
[[ 1 2 3 4 5]
[ 6 7 8 9 10]]
Row sums: [15 40]
Indices of elements > 7: [7 8 9]

By: @DataScienceQ 🚀
4