⁉️ Interview question
What happens when you perform arithmetic operations between a NumPy array and a scalar value, and how does NumPy handle the broadcasting mechanism in such cases?
The operation is applied element-wise, and the scalar is broadcasted to match the shape of the array, enabling efficient computation without explicit loops.
#️⃣ tags: #numpy #python #arrayoperations #broadcasting #interviewquestion
By: t.iss.one/DataScienceQ 🚀
What happens when you perform arithmetic operations between a NumPy array and a scalar value, and how does NumPy handle the broadcasting mechanism in such cases?
#️⃣ tags: #numpy #python #arrayoperations #broadcasting #interviewquestion
By: t.iss.one/DataScienceQ 🚀
⁉️ Interview question
What will be the output of the following NumPy code snippet?
<details><summary>Click to reveal</summary>Answer: [3 5]</details>
#️⃣ tags: #numpy #python #interviewquestion #arrayoperations #slicing #broadcasting
By: @DataScienceQ 🚀
What will be the output of the following NumPy code snippet?
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
result = arr[1:4:2] + arr[::2]
print(result)
#️⃣ tags: #numpy #python #interviewquestion #arrayoperations #slicing #broadcasting
By: @DataScienceQ 🚀
⁉️ Interview question
What does the following NumPy code return?
<details><summary>Click to reveal</summary>Answer: [[ 8 20] [17 47]]</details>
#️⃣ tags: #numpy #python #interviewquestion #arrayoperations #matrixmultiplication #dotproduct
By: @DataScienceQ 🚀
What does the following NumPy code return?
import numpy as np
a = np.arange(6).reshape(2, 3)
b = np.array([[1, 2, 3], [4, 5, 6]])
result = np.dot(a, b.T)
print(result)
#️⃣ tags: #numpy #python #interviewquestion #arrayoperations #matrixmultiplication #dotproduct
By: @DataScienceQ 🚀
❔ Interview question
What is the difference between
Answer:
always creates a new copy of the input data, meaning that modifications to the original list will not affect the resulting array. This ensures data isolation but increases memory usage. In contrast, only creates a copy if the input is not already a NumPy array or compatible format—otherwise, it returns a view of the existing data. This makes asarray() more memory-efficient when working with existing arrays or array-like objects. For example, if you pass an existing NumPy array to asarray(), it returns the same object without copying, whereas array() would still create a new copy even if the input is already a NumPy array
tags: #Python #NumPy #MemoryManagement #DataConversion #ArrayOperations #InterviewQuestion
By: @DataScienceQ 🚀
What is the difference between
numpy.array() and numpy.asarray() when converting a Python list to a NumPy array, and how does it affect memory usage?Answer:
numpy.array()numpy.asarray()tags: #Python #NumPy #MemoryManagement #DataConversion #ArrayOperations #InterviewQuestion
By: @DataScienceQ 🚀
❤4