PyData Careers
20.9K subscribers
205 photos
4 videos
26 files
351 links
Python Data Science jobs, interview tips, and career insights for aspiring professionals.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
NUMPY FOR DS.pdf
4.5 MB
Let's start at the top...

NumPy contains a broad array of functionality for fast numerical & mathematical operations in Python

The core data-structure within #NumPy is an ndArray (or n-dimensional array)

Behind the scenes - much of the NumPy functionality is written in the programming language C

NumPy functionality is used in other popular #Python packages including #Pandas, #Matplotlib, & #scikitlearn!

✉️ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍1
Question 13 (Intermediate):
In NumPy, what is the difference between np.array([1, 2, 3]) and np.array([[1, 2, 3]])?

A) The first is a 1D array, the second is a 2D row vector
B) The first is faster to compute
C) The second automatically transposes the data
D) They are identical in memory usage

#Python #NumPy #Arrays #DataScience

By: https://t.iss.one/DataScienceQ
3
🚀 Comprehensive Guide: How to Prepare for a Data Analyst Python Interview – 350 Most Common Interview Questions

Are you ready: https://hackmd.io/@husseinsheikho/pandas-interview

#DataAnalysis #PythonInterview #DataAnalyst #Pandas #NumPy #Matplotlib #Seaborn #SQL #DataCleaning #Visualization #MachineLearning #Statistics #InterviewPrep


✉️ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
3
Interview question :
What is NumPy, and why is it essential for scientific computing in Python?

Interview question :
How do arrays in NumPy differ from Python lists?

Interview question :
What is the purpose of ndarray in NumPy?

Interview question :
How can you create a 2D array using NumPy?

Interview question :
What does shape represent in a NumPy array?

Interview question :
How do you perform element-wise operations on NumPy arrays?

Interview question :
What is broadcasting in NumPy, and how does it work?

Interview question :
How do you reshape a NumPy array using reshape()?

Interview question :
What is the difference between copy() and view() in NumPy?

Interview question :
How do you concatenate two NumPy arrays along a specific axis?

Interview question :
What is the role of axis parameter in NumPy functions like sum(), mean(), etc.?

Interview question :
How do you find the maximum and minimum values in a NumPy array?

Interview question :
What are ufuncs in NumPy, and give an example?

Interview question :
How do you sort a NumPy array using np.sort()?

Interview question :
What is the use of np.where() in conditional indexing?

Interview question :
How do you generate random numbers using NumPy?

Interview question :
What is the difference between np.random.rand() and np.random.randn()?

Interview question :
How do you load data from a file into a NumPy array?

Interview question :
What is vectorization in NumPy, and why is it important?

Interview question :
How do you calculate the dot product of two arrays in NumPy?

#️⃣ tags: #NumPy #Python #ScientificComputing #Array #ndarray #ElementWiseOperations #Broadcasting #Reshape #CopyView #Concatenation #AxisParameter #MaximumMinimum #ufuncs #Sorting #ConditionalIndexing #RandomNumbers #DataLoading #Vectorization #DotProduct

By: t.iss.one/DataScienceQ 🚀
⁉️ Interview question 
What happens when you perform arithmetic operations between a NumPy array and a scalar value, and how does NumPy handle the broadcasting mechanism in such cases?

The operation is applied element-wise, and the scalar is broadcasted to match the shape of the array, enabling efficient computation without explicit loops.

#️⃣ tags: #numpy #python #arrayoperations #broadcasting #interviewquestion

By: t.iss.one/DataScienceQ 🚀