#DataScience #ArtificialIntelligence #MachineLearning #PythonProgramming #DeepLearning #AIResearch #BigData #NeuralNetworks #DataAnalytics #NLP #AutoML #DataVisualization #ScikitLearn #Pandas #NumPy #TensorFlow #AIethics #PredictiveModeling #GPUComputing #OpenSourceAI
https://t.iss.one/DataScienceQ👩💻
https://t.iss.one/DataScienceQ
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
#DataScience #ArtificialIntelligence #MachineLearning #PythonProgramming #DeepLearning #AIResearch #BigData #NeuralNetworks #DataAnalytics #NLP #AutoML #DataVisualization #ScikitLearn #Pandas #NumPy #TensorFlow #AIethics #PredictiveModeling #GPUComputing #OpenSourceAI
https://t.iss.one/DataScienceQ👩💻
https://t.iss.one/DataScienceQ
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
#DataScience #ArtificialIntelligence #MachineLearning #PythonProgramming #DeepLearning #AIResearch #BigData #NeuralNetworks #DataAnalytics #NLP #AutoML #DataVisualization #ScikitLearn #Pandas #NumPy #TensorFlow #AIethics #PredictiveModeling #GPUComputing #OpenSourceAI
https://t.iss.one/DataScienceQ👩💻
https://t.iss.one/DataScienceQ
Please open Telegram to view this post
VIEW IN TELEGRAM
#DataScience #ArtificialIntelligence #MachineLearning #PythonProgramming #DeepLearning #AIResearch #BigData #NeuralNetworks #DataAnalytics #NLP #AutoML #DataVisualization #ScikitLearn #Pandas #NumPy #TensorFlow #AIethics #PredictiveModeling #GPUComputing #OpenSourceAI
https://t.iss.one/DataScienceQ👩💻
https://t.iss.one/DataScienceQ
Please open Telegram to view this post
VIEW IN TELEGRAM
#DataScience #ArtificialIntelligence #MachineLearning #PythonProgramming #DeepLearning #AIResearch #BigData #NeuralNetworks #DataAnalytics #NLP #AutoML #DataVisualization #ScikitLearn #Pandas #NumPy #TensorFlow #AIethics #PredictiveModeling #GPUComputing #OpenSourceAI
https://t.iss.one/DataScienceQ👩💻
https://t.iss.one/DataScienceQ
Please open Telegram to view this post
VIEW IN TELEGRAM
#DataScience #ArtificialIntelligence #MachineLearning #PythonProgramming #DeepLearning #AIResearch #BigData #NeuralNetworks #DataAnalytics #NLP #AutoML #DataVisualization #ScikitLearn #Pandas #NumPy #TensorFlow #AIethics #PredictiveModeling #GPUComputing #OpenSourceAI
https://t.iss.one/DataScienceQ👩💻
https://t.iss.one/DataScienceQ
Please open Telegram to view this post
VIEW IN TELEGRAM
#DataScience #ArtificialIntelligence #MachineLearning #PythonProgramming #DeepLearning #AIResearch #BigData #NeuralNetworks #DataAnalytics #NLP #AutoML #DataVisualization #ScikitLearn #Pandas #NumPy #TensorFlow #AIethics #PredictiveModeling #GPUComputing #OpenSourceAI
https://t.iss.one/DataScienceQ👩💻
https://t.iss.one/DataScienceQ
Please open Telegram to view this post
VIEW IN TELEGRAM
#DataScience #ArtificialIntelligence #MachineLearning #PythonProgramming #DeepLearning #AIResearch #BigData #NeuralNetworks #DataAnalytics #NLP #AutoML #DataVisualization #ScikitLearn #Pandas #NumPy #TensorFlow #AIethics #PredictiveModeling #GPUComputing #OpenSourceAI
https://t.iss.one/DataScienceQ👩💻
https://t.iss.one/DataScienceQ
Please open Telegram to view this post
VIEW IN TELEGRAM
#DataScience #ArtificialIntelligence #MachineLearning #PythonProgramming #DeepLearning #AIResearch #BigData #NeuralNetworks #DataAnalytics #NLP #AutoML #DataVisualization #ScikitLearn #Pandas #NumPy #TensorFlow #AIethics #PredictiveModeling #GPUComputing #OpenSourceAI
https://t.iss.one/DataScienceQ👩💻
https://t.iss.one/DataScienceQ
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
#DataScience #ArtificialIntelligence #MachineLearning #PythonProgramming #DeepLearning #AIResearch #BigData #NeuralNetworks #DataAnalytics #NLP #AutoML #DataVisualization #ScikitLearn #Pandas #NumPy #TensorFlow #AIethics #PredictiveModeling #GPUComputing #OpenSourceAI
https://t.iss.one/DataScienceQ👩💻
https://t.iss.one/DataScienceQ
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍2
Python Question / Quiz;
What is the output of the following Python code, and why? 🤔🚀 Comment your answers below! 👇
What is the output of the following Python code, and why? 🤔🚀 Comment your answers below! 👇
#python #programming #developer #programmer #coding #coder #softwaredeveloper #computerscience #webdev #webdeveloper #webdevelopment #pythonprogramming #pythonquiz #ai #ml #machinelearning #datascience
https://t.iss.one/DataScienceQ
👍4
Python Question / Quiz;
What is the output of the following Python code, and why? 🤔🚀 Comment your answers below! 👇
What is the output of the following Python code, and why? 🤔🚀 Comment your answers below! 👇
#python #programming #developer #programmer #coding #coder #softwaredeveloper #computerscience #webdev #webdeveloper #webdevelopment #pythonprogramming #pythonquiz #ai #ml #machinelearning #datascience
https://t.iss.one/DataScienceQ
👍2❤1
Python Question / Quiz;
What is the output of the following Python code, and why? 🤔🚀 Comment your answers below! 👇
What is the output of the following Python code, and why? 🤔🚀 Comment your answers below! 👇
#python #programming #developer #programmer #coding #coder #softwaredeveloper #computerscience #webdev #webdeveloper #webdevelopment #pythonprogramming
https://t.iss.one/DataScienceQ
👍4❤1
Python Question / Quiz;
What is the output of the following Python code, and why? 🤔🚀 Comment your answers below! 👇
What is the output of the following Python code, and why? 🤔🚀 Comment your answers below! 👇
#python #programming #developer #programmer #coding #coder #softwaredeveloper #computerscience #webdev #webdeveloper #webdevelopment #pythonprogramming
https://t.iss.one/DataScienceQ
👍2❤1
What will be the output of the following code?
import numpy as np
numbers = np.array([1, 2, 3])
new_numbers = numbers + 1
print(new_numbers.tolist())
#python #programming #developer #programmer #coding #coder #softwaredeveloper #computerscience #webdev #webdeveloper #webdevelopment #pythonprogramming
https://t.iss.one/DataScienceQ
👍2
Python Question / Quiz;
What is the output of the following Python code, and why? 🤔🚀 Comment your answers below! 👇
What is the output of the following Python code, and why? 🤔🚀 Comment your answers below! 👇
#python #programming #developer #programmer #coding #coder #softwaredeveloper #computerscience #webdev #webdeveloper #webdevelopment #pythonprogramming #pythonquiz #ai #ml #machinelearning #datascience
https://t.iss.one/DataScienceQ
👍3
Python Question / Quiz;
What is the output of the following Python code, and why? 🤔🚀 Comment your answers below! 👇
What is the output of the following Python code, and why? 🤔🚀 Comment your answers below! 👇
#python #programming #developer #programmer #coding #coder #softwaredeveloper #computerscience #webdev #webdeveloper #webdevelopment #pythonprogramming
https://t.iss.one/DataScienceQ
👍2
Here are links to the most important free Python courses with a brief description of their value.
1. Coursera: Python for Everybody
Link: https://www.coursera.org/specializations/python
Importance: A perfect starting point for absolute beginners. Covers Python fundamentals and basic data structures, leading to web scraping and database access.
2. freeCodeCamp: Scientific Computing with Python
Link: https://www.freecodecamp.org/learn/scientific-computing-with-python/
Importance: Project-based certification. You build applications like a budget app or a time calculator, reinforcing learning through practical, portfolio-worthy projects.
3. Harvard's CS50P: CS50's Introduction to Programming with Python
Link: https://cs50.harvard.edu/python/2022/
Importance: A rigorous university-level course. Teaches core concepts and problem-solving skills with exceptional depth and clarity, preparing you for complex programming challenges.
4. Real Python Tutorials
Link: https://realpython.com/
Importance: An extensive resource for all levels. Offers in-depth articles, tutorials, and code examples on nearly every Python topic, from basics to advanced specialized libraries.
5. W3Schools Python Tutorial
Link: https://www.w3schools.com/python/
Importance: Excellent for quick reference and interactive learning. Allows you to read a concept and test code directly in the browser, ideal for fast learning and checking syntax.
6. Google's Python Class
Link: https://developers.google.com/edu/python
Importance: A concise, fast-paced course for those with some programming experience. Includes lecture videos and well-designed exercises to quickly get up to speed.
#Python #LearnPython #PythonProgramming #Coding #FreeCourses #PythonForBeginners #Developer #Programming
By: t.iss.one/DataScienceQ 🚀
Coursera
Python for Everybody
Offered by University of Michigan. Learn to Program and ... Enroll for free.
❤2👍1
#How can I implement the K-Nearest Neighbors (KNN) algorithm for classification using scikit-learn? Provide a Python example, explain how distance metrics affect predictions, and discuss the impact of choosing different values of k.
Answer:
KNN is a non-parametric algorithm that classifies data points based on the majority class among their k nearest neighbors in feature space.
Explanation:
- Distance Metrics: Common choices include Euclidean, Manhattan, and Minkowski. Euclidean is default and suitable for continuous variables.
- Choice of k:
- Small k (e.g., 1 or 3): Sensitive to noise, may overfit.
- Large k: Smoother decision boundaries, but may underfit.
- Optimal k is found via cross-validation.
- Standardization: Crucial because KNN uses distance; unscaled features can dominate results.
Time Complexity: O(nm) per prediction, where n is training samples and m is features.
Space Complexity: O(nm) to store training data.
Use Case: KNN is simple, effective for small-to-medium datasets, and works well when patterns are localized.
#MachineLearning #KNN #Classification #ScikitLearn #DataScience #PythonProgramming #AlgorithmExplained #DimensionalityReduction #SupervisedLearning
By: @DataScienceQ 🚀
Answer:
KNN is a non-parametric algorithm that classifies data points based on the majority class among their k nearest neighbors in feature space.
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
import seaborn as sns
# Load dataset
data = datasets.load_iris()
X = data.data
y = data.target
feature_names = data.feature_names
target_names = data.target_names
# Split and scale data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Train KNN model with k=5
knn = KNeighborsClassifier(n_neighbors=5, metric='euclidean')
knn.fit(X_train_scaled, y_train)
# Predict and evaluate
y_pred = knn.predict(X_test_scaled)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
# Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=target_names, yticklabels=target_names)
plt.title('Confusion Matrix')
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.show()
# Visualize decision boundaries (for first two features only)
plt.figure(figsize=(8, 6))
X_plot = X[:, :2] # Use only first two features for visualization
X_plot_scaled = scaler.fit_transform(X_plot)
knn_visual = KNeighborsClassifier(n_neighbors=5)
knn_visual.fit(X_plot_scaled, y)
h = 0.02
x_min, x_max = X_plot_scaled[:, 0].min() - 1, X_plot_scaled[:, 0].max() + 1
y_min, y_max = X_plot_scaled[:, 1].min() - 1, X_plot_scaled[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = knn_visual.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, alpha=0.3, cmap=plt.cm.Paired)
for i, color in enumerate(['red', 'green', 'blue']):
idx = np.where(y == i)
plt.scatter(X_plot_scaled[idx, 0], X_plot_scaled[idx, 1], c=color, label=target_names[i], edgecolors='k')
plt.xlabel(feature_names[0])
plt.ylabel(feature_names[1])
plt.title('KNN Decision Boundaries (First Two Features)')
plt.legend()
plt.show()
Explanation:
- Distance Metrics: Common choices include Euclidean, Manhattan, and Minkowski. Euclidean is default and suitable for continuous variables.
- Choice of k:
- Small k (e.g., 1 or 3): Sensitive to noise, may overfit.
- Large k: Smoother decision boundaries, but may underfit.
- Optimal k is found via cross-validation.
- Standardization: Crucial because KNN uses distance; unscaled features can dominate results.
Time Complexity: O(nm) per prediction, where n is training samples and m is features.
Space Complexity: O(nm) to store training data.
Use Case: KNN is simple, effective for small-to-medium datasets, and works well when patterns are localized.
#MachineLearning #KNN #Classification #ScikitLearn #DataScience #PythonProgramming #AlgorithmExplained #DimensionalityReduction #SupervisedLearning
By: @DataScienceQ 🚀
1. What is the output of the following code?
2. Which of the following data types is immutable in Python?
A) List
B) Dictionary
C) Set
D) Tuple
3. Write a Python program to reverse a string without using built-in functions.
4. What will be printed by this code?
5. Explain the difference between
6. How do you handle exceptions in Python? Provide an example.
7. What is the output of:
8. Which keyword is used to define a function in Python?
A) def
B) function
C) func
D) define
9. Write a program to find the factorial of a number using recursion.
10. What does the
11. What will be the output of:
12. Explain the concept of list comprehension with an example.
13. What is the purpose of the
14. Write a program to check if a given string is a palindrome.
15. What is the output of:
16. Describe how Python manages memory (garbage collection).
17. What will be printed by:
18. Write a Python program to generate the first n Fibonacci numbers.
19. What is the difference between
20. What is the use of the
#PythonQuiz #CodingTest #ProgrammingExam #MultipleChoice #CodeOutput #PythonBasics #InterviewPrep #CodingChallenge #BeginnerPython #TechAssessment #PythonQuestions #SkillCheck #ProgrammingSkills #CodePractice #PythonLearning #MCQ #ShortAnswer #TechnicalTest #PythonSyntax #Algorithm #DataStructures #PythonProgramming
By: @DataScienceQ 🚀
x = [1, 2, 3]
y = x
y.append(4)
print(x)
2. Which of the following data types is immutable in Python?
A) List
B) Dictionary
C) Set
D) Tuple
3. Write a Python program to reverse a string without using built-in functions.
4. What will be printed by this code?
def func(a, b=[]):
b.append(a)
return b
print(func(1))
print(func(2))
5. Explain the difference between
== and is operators in Python.6. How do you handle exceptions in Python? Provide an example.
7. What is the output of:
print(2 ** 3 ** 2)
8. Which keyword is used to define a function in Python?
A) def
B) function
C) func
D) define
9. Write a program to find the factorial of a number using recursion.
10. What does the
*args parameter do in a function?11. What will be the output of:
list1 = [1, 2, 3]
list2 = list1.copy()
list2[0] = 10
print(list1)
12. Explain the concept of list comprehension with an example.
13. What is the purpose of the
__init__ method in a Python class?14. Write a program to check if a given string is a palindrome.
15. What is the output of:
a = [1, 2, 3]
b = a[:]
b[0] = 10
print(a)
16. Describe how Python manages memory (garbage collection).
17. What will be printed by:
x = "hello"
y = "world"
print(x + y)
18. Write a Python program to generate the first n Fibonacci numbers.
19. What is the difference between
range() and xrange() in Python 2?20. What is the use of the
lambda function in Python? Give an example. #PythonQuiz #CodingTest #ProgrammingExam #MultipleChoice #CodeOutput #PythonBasics #InterviewPrep #CodingChallenge #BeginnerPython #TechAssessment #PythonQuestions #SkillCheck #ProgrammingSkills #CodePractice #PythonLearning #MCQ #ShortAnswer #TechnicalTest #PythonSyntax #Algorithm #DataStructures #PythonProgramming
By: @DataScienceQ 🚀
❤1👏1