Data Science Jupyter Notebooks
12.2K subscribers
301 photos
46 videos
9 files
933 links
Explore the world of Data Science through Jupyter Notebooksโ€”insights, tutorials, and tools to boost your data journey. Code, analyze, and visualize smarter with every post.
Download Telegram
๐Ÿ”ฅ Trending Repository: awesome-deeplearning-resources

๐Ÿ“ Description: Deep Learning and deep reinforcement learning research papers and some codes

๐Ÿ”— Repository URL: https://github.com/endymecy/awesome-deeplearning-resources

๐Ÿ“– Readme: https://github.com/endymecy/awesome-deeplearning-resources#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 2.9K stars
๐Ÿ‘€ Watchers: 221
๐Ÿด Forks: 666 forks

๐Ÿ’ป Programming Languages: Not available

๐Ÿท๏ธ Related Topics:
#nlp #video #reinforcement_learning #deep_learning #neural_network #code #paper #corpus #modelzoo


==================================
๐Ÿง  By: https://t.iss.one/DataScienceN
๐Ÿ”ฅ Trending Repository: Deep-Learning-for-Tracking-and-Detection

๐Ÿ“ Description: Collection of papers, datasets, code and other resources for object tracking and detection using deep learning

๐Ÿ”— Repository URL: https://github.com/abhineet123/Deep-Learning-for-Tracking-and-Detection

๐Ÿ“– Readme: https://github.com/abhineet123/Deep-Learning-for-Tracking-and-Detection#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 2.5K stars
๐Ÿ‘€ Watchers: 155
๐Ÿด Forks: 654 forks

๐Ÿ’ป Programming Languages: HTML

๐Ÿท๏ธ Related Topics:
#tracking #deep_learning #detection #segmentation #object_detection #optical_flow #papers #tracking_by_detection #code_collection #paper_collection


==================================
๐Ÿง  By: https://t.iss.one/DataScienceN
๐Ÿ”ฅ Trending Repository: mago

๐Ÿ“ Description: Mago is a toolchain for PHP that aims to provide a set of tools to help developers write better code.

๐Ÿ”— Repository URL: https://github.com/carthage-software/mago

๐ŸŒ Website: https://mago.carthage.software/

๐Ÿ“– Readme: https://github.com/carthage-software/mago#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 772 stars
๐Ÿ‘€ Watchers: 12
๐Ÿด Forks: 41 forks

๐Ÿ’ป Programming Languages: Rust - PHP

๐Ÿท๏ธ Related Topics:
#php #parser #formatter #linter #static_analysis #coding_standards #lexer #code_style #type_checker #code_analyzer


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: intellij-community

๐Ÿ“ Description: IntelliJ IDEA & IntelliJ Platform

๐Ÿ”— Repository URL: https://github.com/JetBrains/intellij-community

๐ŸŒ Website: https://jetbrains.com/idea

๐Ÿ“– Readme: https://github.com/JetBrains/intellij-community#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 18.8K stars
๐Ÿ‘€ Watchers: 537
๐Ÿด Forks: 5.6K forks

๐Ÿ’ป Programming Languages: Java - Kotlin - Python - HTML - Starlark - JavaScript

๐Ÿท๏ธ Related Topics:
#intellij #ide #code_editor #intellij_platform #intellij_community


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
โค1
๐Ÿ”ฅ Trending Repository: daytona

๐Ÿ“ Description: Daytona is a Secure and Elastic Infrastructure for Running AI-Generated Code

๐Ÿ”— Repository URL: https://github.com/daytonaio/daytona

๐ŸŒ Website: https://daytona.io

๐Ÿ“– Readme: https://github.com/daytonaio/daytona#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 22.6K stars
๐Ÿ‘€ Watchers: 76
๐Ÿด Forks: 2.4K forks

๐Ÿ’ป Programming Languages: TypeScript - MDX - Go - Python - JavaScript - Astro

๐Ÿท๏ธ Related Topics:
#ai #developer_tools #code_execution #ai_agents #code_interpreter #ai_runtime #agentic_workflow #ai_sandboxes


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: DeepAudit

๐Ÿ“ Description: DeepAudit๏ผšไบบไบบๆ‹ฅๆœ‰็š„ AI ้ป‘ๅฎขๆˆ˜้˜Ÿ๏ผŒ่ฎฉๆผๆดžๆŒ–ๆŽ˜่งฆๆ‰‹ๅฏๅŠใ€‚ๅ›ฝๅ†…้ฆ–ไธชๅผ€ๆบไปฃ็ ๆผๆดžๆŒ–ๆŽ˜ๅคšๆ™บ่ƒฝไฝ“็ณป็ปŸใ€‚ๅฐ็™ฝไธ€้”ฎ้ƒจ็ฝฒ่ฟ่กŒ๏ผŒ่‡ชไธปๅไฝœๅฎก่ฎก + ่‡ชๅŠจๅŒ–ๆฒ™็ฎฑ PoC ้ชŒ่ฏใ€‚ๆ”ฏๆŒ Ollama ็งๆœ‰้ƒจ็ฝฒ ๏ผŒไธ€้”ฎ็”ŸๆˆๆŠฅๅ‘Šใ€‚โ€‹่ฎฉๅฎ‰ๅ…จไธๅ†ๆ˜‚่ดต๏ผŒ่ฎฉๅฎก่ฎกไธๅ†ๅคๆ‚ใ€‚

๐Ÿ”— Repository URL: https://github.com/lintsinghua/DeepAudit

๐ŸŒ Website: https://xcodereviewer-preview.vercel.app

๐Ÿ“– Readme: https://github.com/lintsinghua/DeepAudit#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 1.9K stars
๐Ÿ‘€ Watchers: 13
๐Ÿด Forks: 207 forks

๐Ÿ’ป Programming Languages: Python - TypeScript - Shell - PowerShell - CSS - PLpgSQL

๐Ÿท๏ธ Related Topics:
#react #typescript #ai #developer_tools #code_review #code_quality #security_scanner #devsecops #vulnerability_scanner #sast #xai #code_audit #vite #bug_detection #supabase #llm #google_gemini


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
โค1
Do you want to teach AI on real projects?

In this #repository, there are 29 projects with Generative #AI,#MachineLearning, and #Deep +Learning.

With full #code for each one. This is pure gold: https://github.com/KalyanM45/AI-Project-Gallery

๐Ÿ‘‰ https://t.iss.one/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โšก๏ธ Running DeepSeek on our computer using Python

Do you want an LLM on your computer: to work offline, not leak data, and seamlessly integrate into a bot? Then let's take DeepSeek Coder and get started!

โš™๏ธ Installing dependencies:
pip install -U transformers accelerate torch


โ–ถ๏ธ Example code:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name = "deepseek-ai/deepseek-coder-6.7b-base"

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    trust_remote_code=True,
    torch_dtype=torch.float16,   # if the GPU supports fp16
    device_map="auto"            # if there's a GPU โ€” it will use it
)
model.eval()

prompt = "Write a Telegram feedback bot on aiogram"

inputs = tokenizer(prompt, return_tensors="pt")
device = next(model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}

with torch.inference_mode():
    outputs = model.generate(
        **inputs,
        max_new_tokens=180,
        do_sample=True,      # IMPORTANT: otherwise the temperature doesn't affect
        temperature=0.7,
        top_p=0.9
    )

print(tokenizer.decode(outputs[0], skip_special_tokens=True))


โž• Advantages:
โ€” works locally (after downloading the weights);
โ€” easily integrates into Telegram/Discord/CLI;
โ€” can be accelerated on the GPU via device_map="auto".

If memory is limited โ€” there are quantized versions (4bit/8bit) and GGUF.

๐Ÿ‘ Saving

#python #soft #code
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1