Machine Learning
39.1K subscribers
3.81K photos
31 videos
41 files
1.3K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
The Roadmap for Mastering MLOps in 2025

Organizations increasingly adopt machine learning solutions into their daily operations and long-term strategies, and, as a result, the need for effective standards for deploying and maintaining machine learning systems has become critical. MLOps (short for machine learning operations) arose to meet these needs. It encompasses a series of practices that blend machine learning modeling, software engineering, and data engineering across the entire machine learning system lifecycle.

If you are keen on venturing into the realm of MLOps in 2025 and unsure of where to start, this article highlights and puts together its building blocks and latest trends, both crucial to gain understanding of the current #MLOps landscape.


Read: https://machinelearningmastery.com/the-roadmap-for-mastering-mlops-in-2025/

By: https://t.iss.one/DataScienceM πŸ’ 
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘2
10 GitHub repos to build a career in AI engineering:

(100% free step-by-step roadmap)

1️⃣ ML for Beginners by Microsoft

A 12-week project-based curriculum that teaches classical ML using Scikit-learn on real-world datasets.

Includes quizzes, lessons, and hands-on projects, with some videos.

GitHub repo β†’ https://lnkd.in/dCxStbYv

2️⃣ AI for Beginners by Microsoft

This repo covers neural networks, NLP, CV, transformers, ethics & more. There are hands-on labs in PyTorch & TensorFlow using Jupyter.

Beginner-friendly, project-based, and full of real-world apps.

GitHub repo β†’ https://lnkd.in/dwS5Jk9E

3️⃣ Neural Networks: Zero to Hero

Now that you’ve grasped the foundations of AI/ML, it’s time to dive deeper.

This repo by Andrej Karpathy builds modern deep learning systems from scratch, including GPTs.

GitHub repo β†’ https://lnkd.in/dXAQWucq

4️⃣ DL Paper Implementations

So far, you have learned the fundamentals of AI, ML, and DL. Now study how the best architectures work.

This repo covers well-documented PyTorch implementations of 60+ research papers on Transformers, GANs, Diffusion models, etc.

GitHub repo β†’ https://lnkd.in/dTrtDrvs

5️⃣ Made With ML

Now it’s time to learn how to go from notebooks to production.

Made With ML teaches you how to design, develop, deploy, and iterate on real-world ML systems using MLOps, CI/CD, and best practices.

GitHub repo β†’ https://lnkd.in/dYyjjBGb

6️⃣ Hands-on LLMs

- You've built neural nets.
- You've explored GPTs and LLMs.

Now apply them. This is a visually rich repo that covers everything about LLMs, like tokenization, fine-tuning, RAG, etc.

GitHub repo β†’ https://lnkd.in/dh2FwYFe

7️⃣ Advanced RAG Techniques

Hands-on LLMs will give you a good grasp of RAG systems. Now learn advanced RAG techniques.

This repo covers 30+ methods to make RAG systems faster, smarter, and accurate, like HyDE, GraphRAG, etc.

GitHub repo β†’ https://lnkd.in/dBKxtX-D

8️⃣ AI Agents for Beginners by Microsoft

After diving into LLMs and mastering RAG, learn how to build AI agents.

This hands-on course covers building AI agents using frameworks like AutoGen.

GitHub repo β†’ https://lnkd.in/dbFeuznE

9️⃣ Agents Towards Production

The above course will teach what AI agents are. Next, learn how to ship them.

This is a practical playbook for building agents covering memory, orchestration, deployment, security & more.

GitHub repo β†’ https://lnkd.in/dcwmamSb

πŸ”Ÿ AI Engg. Hub

To truly master LLMs, RAG, and AI agents, you need projects.

This covers 70+ real-world examples, tutorials, and agent app you can build, adapt, and ship.

GitHub repo β†’ https://lnkd.in/geMYm3b6

#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers


βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❀4
Auto-Encoder & Backpropagation by hand ✍️ lecture video ~ πŸ“Ί https://byhand.ai/cv/10

It took me a few years to invent this method to show both forward and backward passes for a non-trivial case of a multi-layer perceptron over a batch of inputs, plus gradient descents over multiple epochs, while being able to hand calculate each step and code in Excel at the same time.

= Chapters =
β€’ Encoder & Decoder (00:00)
β€’ Equation (10:09)
β€’ 4-2-4 AutoEncoder (16:38)
β€’ 6-4-2-4-6 AutoEncoder (18:39)
β€’ L2 Loss (20:49)
β€’ L2 Loss Gradient (27:31)
β€’ Backpropagation (30:12)
β€’ Implement Backpropagation (39:00)
β€’ Gradient Descent (44:30)
β€’ Summary (51:39)

#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers


βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
❀5
What is torch.nn really?

When I started working with PyTorch, my biggest question was: "What is torch.nn?".


This article explains it quite well.

πŸ“Œ Read

#pytorch #AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers


βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
❀7
🌟 Vision Transformer (ViT) Tutorial – Part 6: Vision Transformers in Production – MLOps, Monitoring & CI/CD

Learn more: https://hackmd.io/@husseinsheikho/vit-6

#MLOps #ModelMonitoring #CIforML #MLflow #WandB #Kubeflow #ProductionAI #DeepLearning #ComputerVision #Transformers #AIOps

βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❀1
πŸ”₯ Trending Repository: vllm

πŸ“ Description: A high-throughput and memory-efficient inference and serving engine for LLMs

πŸ”— Repository URL: https://github.com/vllm-project/vllm

🌐 Website: https://docs.vllm.ai

πŸ“– Readme: https://github.com/vllm-project/vllm#readme

πŸ“Š Statistics:
🌟 Stars: 55.5K stars
πŸ‘€ Watchers: 428
🍴 Forks: 9.4K forks

πŸ’» Programming Languages: Python - Cuda - C++ - Shell - C - CMake

🏷️ Related Topics:
#amd #cuda #inference #pytorch #transformer #llama #gpt #rocm #model_serving #tpu #hpu #mlops #xpu #llm #inferentia #llmops #llm_serving #qwen #deepseek #trainium


==================================
🧠 By: https://t.iss.one/DataScienceM
❀3
πŸ€–πŸ§  MLOps Basics: A Complete Guide to Building, Deploying and Monitoring Machine Learning Models

πŸ—“οΈ 30 Oct 2025
πŸ“š AI News & Trends

Machine Learning models are powerful but building them is only half the story. The true challenge lies in deploying, scaling and maintaining these models in production environments – a process that requires collaboration between data scientists, developers and operations teams. This is where MLOps (Machine Learning Operations) comes in. MLOps combines the principles of DevOps ...

#MLOps #MachineLearning #DevOps #ModelDeployment #DataScience #ProductionAI
πŸ“Œ How to Evaluate Retrieval Quality in RAG Pipelines (Part 3): DCG@k and NDCG@k

πŸ—‚ Category: LARGE LANGUAGE MODELS

πŸ•’ Date: 2025-11-12 | ⏱️ Read time: 8 min read

This final part of the series on RAG pipeline evaluation explores advanced metrics for assessing retrieval quality. Learn how to use Discounted Cumulative Gain (DCG@k) and Normalized Discounted Cumulative Gain (NDCG@k) to measure the relevance and ranking of retrieved documents, moving beyond simpler metrics for a more nuanced understanding of your system's performance.

#RAG #EvaluationMetrics #LLM #InformationRetrieval #MLOps
❀5
πŸ“Œ Organizing Code, Experiments, and Research for Kaggle Competitions

πŸ—‚ Category: PROJECT MANAGEMENT

πŸ•’ Date: 2025-11-13 | ⏱️ Read time: 21 min read

Winning a Kaggle medal requires a disciplined approach, not just a great model. This guide shares essential lessons and tips from a medalist on effectively organizing your code, tracking experiments, and structuring your research. Learn how to streamline your competitive data science workflow, avoid common pitfalls, and improve your chances of success.

#Kaggle #DataScience #MachineLearning #MLOps
πŸ“Œ LLM-as-a-Judge: What It Is, Why It Works, and How to Use It to Evaluate AI Models

πŸ—‚ Category: LARGE LANGUAGE MODELS

πŸ•’ Date: 2025-11-24 | ⏱️ Read time: 9 min read

Explore the 'LLM-as-a-Judge' framework, a novel approach for evaluating AI systems. This guide explains how to use large language models as automated judges to assess model performance and ensure AI quality control. It provides a step-by-step breakdown of the methodology, explores the reasons behind its effectiveness, and shows you how to implement this powerful evaluation technique.

#AIEvaluation #LLM #MLOps #LLMasJudge
❀1🀩1
πŸ“Œ Ten Lessons of Building LLM Applications for Engineers

πŸ—‚ Category: LLM APPLICATIONS

πŸ•’ Date: 2025-11-25 | ⏱️ Read time: 22 min read

Drawing from two years of hands-on experience, this article outlines ten essential lessons for engineers building applications with Large Language Models. Gain practical insights and field-tested advice on structuring projects, optimizing workflows, and implementing effective evaluation strategies to successfully navigate the complexities of LLM development. This guide is for engineers looking to move from theory to production-ready applications.

#LLM #AIdevelopment #SoftwareEngineering #MLOps
❀1
πŸ“Œ Learning, Hacking, and Shipping ML

πŸ—‚ Category: AUTHOR SPOTLIGHTS

πŸ•’ Date: 2025-12-01 | ⏱️ Read time: 11 min read

Explore the ML lifecycle with Vyacheslav Efimov as he shares key insights for tech professionals. This discussion covers everything from creating effective data science roadmaps and succeeding in AI hackathons to the practicalities of shipping ML products. Learn how the evolution of AI is meaningfully changing the day-to-day workflows and challenges for machine learning practitioners in the field.

#MachineLearning #AI #DataScience #MLOps #Hackathon
❀2
πŸ“Œ Overcoming the Hidden Performance Traps of Variable-Shaped Tensors: Efficient Data Sampling in PyTorch

πŸ—‚ Category: DEEP LEARNING

πŸ•’ Date: 2025-12-03 | ⏱️ Read time: 10 min read

Unlock peak PyTorch performance by addressing the hidden bottlenecks caused by variable-shaped tensors. This deep dive focuses on the critical data sampling phase, offering practical optimization strategies to handle tensors of varying sizes efficiently. Learn how to analyze and improve your data loading pipeline for faster model training and overall performance gains.

#PyTorch #PerformanceOptimization #DeepLearning #MLOps
❀3
πŸ“Œ How to Turn Your LLM Prototype into a Production-Ready System

πŸ—‚ Category: LLM APPLICATIONS

πŸ•’ Date: 2025-12-03 | ⏱️ Read time: 15 min read

Transforming a promising LLM prototype into a production-ready system involves significant engineering challenges. This guide outlines the essential steps and best practices for moving beyond the experimental phase, focusing on building scalable, reliable, and efficient LLM applications for real-world deployment. Learn how to successfully operationalize your language model from concept to production.

#LLM #MLOps #ProductionAI #LLMOps
❀3
πŸ“Œ On the Challenge of Converting TensorFlow Models to PyTorch

πŸ—‚ Category: DEEP LEARNING

πŸ•’ Date: 2025-12-05 | ⏱️ Read time: 19 min read

Converting legacy TensorFlow models to PyTorch presents significant challenges but offers opportunities for modernization and optimization. This guide explores the common hurdles in the migration process, from architectural differences to API incompatibilities, and provides practical strategies for successfully upgrading your AI/ML pipelines. Learn how to not only convert but also enhance your models for better performance and maintainability in the PyTorch ecosystem.

#PyTorch #TensorFlow #ModelConversion #MLOps #DeepLearning
❀4