📚 Computational Methods with MATLAB (2023)
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/575
💬 Tags: #matlab
USEFUL CHANNELS FOR YOU
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/575
💬 Tags: #matlab
USEFUL CHANNELS FOR YOU
👍29🔥5
📚 Machine and Deep Learning Using MATLAB (2023)
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/1161
💬 Tags: #ML #DEEPLEARNING #MATLAB
👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/1161
💬 Tags: #ML #DEEPLEARNING #MATLAB
👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
👍7❤1
📚 Mastering MATLAB (2024)
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/1174
💬 Tags: #MATLAB
👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/1174
💬 Tags: #MATLAB
👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
👍8🌭1🏆1
📚 MATLAB for Machine Learning (2024)
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/1183
💬 Tags: #MATLAB
👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/1183
💬 Tags: #MATLAB
👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
👍8👎1
https://t.iss.one/+MhmkscCzIYQ2MmM8
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤1🔥1
📚 MATLAB for Machine Learning (2024)
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/1511
💬 Tags: #MATLAB
👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/1511
💬 Tags: #MATLAB
👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
👍12
📚 Digital Image Denoising in MATLAB (2024)
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/1661
💬 Tags: #matlab
👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/1661
💬 Tags: #matlab
👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
👍5
📚 MATLAB (2024)
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/1986
💬 Tags: #MATLAB
✅ USEFUL CHANNELS FOR YOU ⭐️
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/1986
💬 Tags: #MATLAB
✅ USEFUL CHANNELS FOR YOU ⭐️
👍9
Please open Telegram to view this post
VIEW IN TELEGRAM
Top 30 MATLAB Image Processing Functions
#MATLAB #ImageProcessing #Basics
#1.
Reads an image from a file into a matrix.
#2.
Displays an image in a figure window.
#3.
Writes an image matrix to a file.
#4.
Returns the dimensions of the image matrix (rows, columns, color channels).
#5.
Converts an RGB color image to a grayscale intensity image.
---
#MATLAB #ImageProcessing #Conversion #Transformation
#6.
Converts an image to double-precision format, scaling data to the range [0, 1].
#7.
Resizes an image to a specified size.
#8.
Rotates an image by a specified angle.
#9.
Crops an image to a specified rectangle.
#10.
Converts an RGB image to the Hue-Saturation-Value (HSV) color space.
---
#MATLAB #ImageProcessing #Enhancement
#11.
Displays the histogram of an image, showing the distribution of pixel intensity values.
#MATLAB #ImageProcessing #Basics
#1.
imread()Reads an image from a file into a matrix.
img = imread('peppers.png');
disp('Image "peppers.png" loaded into variable "img".');Image "peppers.png" loaded into variable "img".
#2.
imshow()Displays an image in a figure window.
img = imread('peppers.png');
imshow(img);
title('Peppers Image');Output: A new figure window opens, displaying the 'peppers.png' image with the title "Peppers Image".
#3.
imwrite()Writes an image matrix to a file.
img = imread('cameraman.tif');
imwrite(img, 'my_cameraman.jpg');
disp('Image saved as my_cameraman.jpg');Image saved as my_cameraman.jpg
#4.
size()Returns the dimensions of the image matrix (rows, columns, color channels).
rgb_img = imread('peppers.png');
gray_img = imread('cameraman.tif');
size_rgb = size(rgb_img);
size_gray = size(gray_img);
disp(['Size of RGB image: ', num2str(size_rgb)]);
disp(['Size of grayscale image: ', num2str(size_gray)]);Size of RGB image: 384 512 3
Size of grayscale image: 256 256
#5.
rgb2gray()Converts an RGB color image to a grayscale intensity image.
rgb_img = imread('peppers.png');
gray_img = rgb2gray(rgb_img);
imshow(gray_img);
title('Grayscale Peppers');Output: A figure window displays the grayscale version of the peppers image.
---
#MATLAB #ImageProcessing #Conversion #Transformation
#6.
im2double()Converts an image to double-precision format, scaling data to the range [0, 1].
img_uint8 = imread('cameraman.tif');
img_double = im2double(img_uint8);
disp(['Max value of original image: ', num2str(max(img_uint8(:)))]);
disp(['Max value of double image: ', num2str(max(img_double(:)))]);Max value of original image: 253
Max value of double image: 0.99216
#7.
imresize()Resizes an image to a specified size.
img = imread('cameraman.tif');
resized_img = imresize(img, 0.5); % Resize to 50% of original size
imshow(resized_img);
title('Resized Cameraman');Output: A figure window displays the cameraman image at half its original size.
#8.
imrotate()Rotates an image by a specified angle.
img = imread('cameraman.tif');
rotated_img = imrotate(img, 30, 'bilinear', 'crop');
imshow(rotated_img);
title('Rotated 30 Degrees');Output: A figure window displays the cameraman image rotated by 30 degrees, cropped to the original size.
#9.
imcrop()Crops an image to a specified rectangle.
img = imread('peppers.png');
% [xmin ymin width height]
cropped_img = imcrop(img, [100 80 250 200]);
imshow(cropped_img);
title('Cropped Image');Output: A figure window displays only the rectangular section specified from the peppers image.
#10.
rgb2hsv()Converts an RGB image to the Hue-Saturation-Value (HSV) color space.
rgb_img = imread('peppers.png');
hsv_img = rgb2hsv(rgb_img);
hue_channel = hsv_img(:,:,1); % Extract the Hue channel
imshow(hue_channel);
title('Hue Channel of Peppers Image');Output: A figure window displays the Hue channel of the peppers image as a grayscale image.
---
#MATLAB #ImageProcessing #Enhancement
#11.
imhist()Displays the histogram of an image, showing the distribution of pixel intensity values.
gray_img = imread('pout.tif');
imhist(gray_img);
title('Histogram of a Low-Contrast Image');Output: A figure window with a bar chart showing the intensity distribution of the 'pout.tif' image.
#12.
histeq()Enhances contrast using histogram equalization.
low_contrast_img = imread('pout.tif');
high_contrast_img = histeq(low_contrast_img);
imshow(high_contrast_img);
title('Histogram Equalized Image');Output: A figure window displays a higher contrast version of the 'pout.tif' image.
#13.
imadjust()Adjusts image intensity values or colormap by mapping intensity values to new values.
img = imread('cameraman.tif');
adjusted_img = imadjust(img, [0.3 0.7], []);
imshow(adjusted_img);
title('Intensity Adjusted Image');Output: A figure window showing a high-contrast version of the cameraman image, where intensities between 0.3 and 0.7 are stretched to the full [0, 1] range.
#14.
imtranslate()Translates (shifts) an image horizontally and vertically.
img = imread('cameraman.tif');
translated_img = imtranslate(img, [25, 15]); % Shift 25 pixels right, 15 pixels down
imshow(translated_img);
title('Translated Image');Output: A figure window shows the cameraman image shifted to the right and down.
#15.
imsharpen()Sharpens an image using the unsharp masking method.
img = imread('peppers.png');
sharpened_img = imsharpen(img);
imshow(sharpened_img);
title('Sharpened Image');Output: A figure window displays a crisper, more detailed version of the peppers image.
---
#MATLAB #ImageProcessing #Filtering #Noise
#16.
imnoise()Adds a specified type of noise to an image.
img = imread('cameraman.tif');
noisy_img = imnoise(img, 'salt & pepper', 0.02);
imshow(noisy_img);
title('Image with Salt & Pepper Noise');Output: A figure window displays the cameraman image with random white and black pixels (noise).
#17.
fspecial()Creates a predefined 2-D filter kernel (e.g., for averaging, Gaussian blur, Laplacian).
h = fspecial('motion', 20, 45); % Create a motion blur filter
disp('Generated a 2D motion filter kernel.');
disp(h);Generated a 2D motion filter kernel.
(Output is a matrix representing the filter kernel)
#18.
imfilter()Filters a multidimensional image with a specified filter kernel.
img = imread('cameraman.tif');
h = fspecial('motion', 20, 45);
motion_blur_img = imfilter(img, h, 'replicate');
imshow(motion_blur_img);
title('Motion Blurred Image');Output: A figure window shows the cameraman image with a motion blur effect applied at a 45-degree angle.
#19.
medfilt2()Performs 2-D median filtering, which is excellent for removing 'salt & pepper' noise.
noisy_img = imnoise(imread('cameraman.tif'), 'salt & pepper', 0.02);
denoised_img = medfilt2(noisy_img);
imshow(denoised_img);
title('Denoised with Median Filter');Output: A figure window shows the noisy image significantly cleaned up, with most salt & pepper noise removed.
#20.
edge()Finds edges in an intensity image using various algorithms (e.g., Sobel, Canny).
img = imread('cameraman.tif');
edges = edge(img, 'Canny');
imshow(edges);
title('Edges found with Canny Detector');Output: A figure window displays a binary image showing only the detected edges from the original image in white.
---
#MATLAB #ImageProcessing #Segmentation #Morphology
#21.
graythresh()Computes a global image threshold from a grayscale image using Otsu's method.
img = imread('coins.png');
level = graythresh(img);
disp(['Optimal threshold level (Otsu): ', num2str(level)]);Optimal threshold level (Otsu): 0.49412
#22.
imbinarize()Converts a grayscale image to a binary image based on a threshold.
img = imread('coins.png');
level = graythresh(img); % Find optimal threshold
bw_img = imbinarize(img, level);
imshow(bw_img);
title('Binarized Image (Otsu Method)');Output: A figure window displays a black and white image of the coins.
#23.
strel()Creates a morphological structuring element (SE), which is used to probe an image in morphological operations.
se = strel('disk', 5);
disp('Created a disk-shaped structuring element with radius 5.');
disp(se);Created a disk-shaped structuring element with radius 5.
(Output describes the strel object and shows its matrix representation)
#24.
imdilate()Dilates a binary image, making objects larger and filling small holes.
img = imread('text.png');
se = strel('line', 3, 90); % A vertical line SE
dilated_img = imdilate(img, se);
imshow(dilated_img);
title('Dilated Text');Output: A figure window shows the text characters appearing thicker, especially in the vertical direction.
#25.
imerode()Erodes a binary image, shrinking objects and removing small noise.
img = imread('text.png');
se = strel('line', 3, 0); % A horizontal line SE
eroded_img = imerode(img, se);
imshow(eroded_img);
title('Eroded Text');Output: A figure window shows the text characters appearing thinner, with horizontal parts possibly disappearing.
---
#MATLAB #ImageProcessing #Analysis
#26.
imopen()Performs morphological opening (erosion followed by dilation). It smooths contours and removes small objects.
original = imread('circbw.tif');
se = strel('disk', 10);
opened_img = imopen(original, se);
imshow(opened_img);
title('Morphologically Opened Image');Output: A figure window displays the image with small protrusions removed and gaps between objects widened.
#27.
bwareaopen()Removes all connected components (objects) from a binary image that have fewer than a specified number of pixels.
img = imread('text.png');
cleaned_img = bwareaopen(img, 50); % Remove objects with fewer than 50 pixels
imshow(cleaned_img);
title('Image after removing small objects');Output: A figure window shows the text image with small noise specks or broken parts of characters removed.
#28.
bwlabel()Labels connected components in a binary image.
img = imread('text.png');
[L, num] = bwlabel(img);
disp(['Number of connected objects found: ', num2str(num)]);Number of connected objects found: 114
#29.
regionprops()Measures a set of properties for each labeled region in an image.