📚 Ultimate Pandas for Data Manipulation and Visualization (2024)
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/1612
💬 Tags: #Pandas #DataManipulation
👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/1612
💬 Tags: #Pandas #DataManipulation
👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
👍6❤5
import pandas as pd
s = pd.Series(['A', 'B', 'A', 'C', 'A', 'B'])
print(s.value_counts())
A 3
B 2
C 1
dtype: int64
#DataManipulation #Transformation
---
21.
series.unique()Returns an array of unique values in a Series.
import pandas as pd
s = pd.Series(['A', 'B', 'A', 'C', 'A', 'B'])
print(s.unique())
['A' 'B' 'C']
---
22.
df.sort_values()Sorts a DataFrame by the values of one or more columns.
import pandas as pd
data = {'Name': ['Charlie', 'Alice', 'Bob'], 'Age': [35, 25, 30]}
df = pd.DataFrame(data)
sorted_df = df.sort_values(by='Age')
print(sorted_df)
Name Age
1 Alice 25
2 Bob 30
0 Charlie 35
---
23.
df.groupby()Groups a DataFrame using a mapper or by a Series of columns for aggregation.
import pandas as pd
data = {'Dept': ['HR', 'IT', 'HR', 'IT'], 'Salary': [70, 85, 75, 90]}
df = pd.DataFrame(data)
grouped = df.groupby('Dept').mean()
print(grouped)
Salary
Dept
HR 72.5
IT 87.5
---
24.
df.agg()Applies one or more aggregations over the specified axis.
import pandas as pd
data = {'Dept': ['HR', 'IT', 'HR', 'IT'], 'Salary': [70, 85, 75, 90]}
df = pd.DataFrame(data)
agg_results = df.groupby('Dept')['Salary'].agg(['mean', 'sum'])
print(agg_results)
mean sum
Dept
HR 72.5 145
IT 87.5 175
#Aggregation #Grouping #Sorting
---
25.
df.apply()Applies a function along an axis of the DataFrame.
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3], 'B': [10, 20, 30]})
# Apply a function to double each value in column 'A'
df['A_doubled'] = df['A'].apply(lambda x: x * 2)
print(df)
A B A_doubled
0 1 10 2
1 2 20 4
2 3 30 6
---
26.
pd.merge()Merges two DataFrames based on a common column or index, similar to a SQL join.
import pandas as pd
df1 = pd.DataFrame({'ID': [1, 2], 'Name': ['Alice', 'Bob']})
df2 = pd.DataFrame({'ID': [1, 2], 'Role': ['Engineer', 'Analyst']})
merged_df = pd.merge(df1, df2, on='ID')
print(merged_df)
ID Name Role
0 1 Alice Engineer
1 2 Bob Analyst
---
27.
pd.concat()Concatenates (stacks) pandas objects along a particular axis.
import pandas as pd
df1 = pd.DataFrame({'A': ['A0'], 'B': ['B0']})
df2 = pd.DataFrame({'A': ['A1'], 'B': ['B1']})
concatenated_df = pd.concat([df1, df2])
print(concatenated_df)
A B
0 A0 B0
0 A1 B1
---
28.
df.pivot_table()Creates a spreadsheet-style pivot table as a DataFrame.
❤2