#Pandas #DataAnalysis #Python #DataScience #Tutorial
Top 30 Pandas Functions & Methods
This lesson covers 30 essential Pandas functions for data manipulation and analysis, each with a standalone example and its output.
---
1.
Creates a new DataFrame (a 2D labeled data structure) from various inputs like dictionaries or lists.
---
2.
Creates a new Series (a 1D labeled array).
---
3.
Reads data from a CSV file into a DataFrame. (Assuming a file
---
4.
Writes a DataFrame to a CSV file.
#PandasIO #DataFrame #Series
---
5.
Returns the first
---
6.
Returns the last
---
7.
Provides a concise summary of the DataFrame, including data types and non-null values.
---
8.
Returns a tuple representing the dimensionality (rows, columns) of the DataFrame.
#DataInspection #PandasBasics
---
9.
Generates descriptive statistics for numerical columns (count, mean, std, min, max, etc.).
Top 30 Pandas Functions & Methods
This lesson covers 30 essential Pandas functions for data manipulation and analysis, each with a standalone example and its output.
---
1.
pd.DataFrame()Creates a new DataFrame (a 2D labeled data structure) from various inputs like dictionaries or lists.
import pandas as pd
data = {'col1': [1, 2], 'col2': [3, 4]}
df = pd.DataFrame(data)
print(df)
col1 col2
0 1 3
1 2 4
---
2.
pd.Series()Creates a new Series (a 1D labeled array).
import pandas as pd
s = pd.Series([10, 20, 30, 40], name='MyNumbers')
print(s)
0 10
1 20
2 30
3 40
Name: MyNumbers, dtype: int64
---
3.
pd.read_csv()Reads data from a CSV file into a DataFrame. (Assuming a file
data.csv exists).# Create a dummy csv file first
with open('data.csv', 'w') as f:
f.write('Name,Age\nAlice,25\nBob,30')
df = pd.read_csv('data.csv')
print(df)
Name Age
0 Alice 25
1 Bob 30
---
4.
df.to_csv()Writes a DataFrame to a CSV file.
import pandas as pd
df = pd.DataFrame({'Name': ['Charlie'], 'Age': [35]})
# index=False prevents writing the DataFrame index to the file
df.to_csv('output.csv', index=False)
# You can check that 'output.csv' has been created.
print("File 'output.csv' created.")
File 'output.csv' created.
#PandasIO #DataFrame #Series
---
5.
df.head()Returns the first
n rows of the DataFrame (default is 5).import pandas as pd
data = {'Name': ['A', 'B', 'C', 'D', 'E', 'F'], 'Value': [1, 2, 3, 4, 5, 6]}
df = pd.DataFrame(data)
print(df.head(3))
Name Value
0 A 1
1 B 2
2 C 3
---
6.
df.tail()Returns the last
n rows of the DataFrame (default is 5).import pandas as pd
data = {'Name': ['A', 'B', 'C', 'D', 'E', 'F'], 'Value': [1, 2, 3, 4, 5, 6]}
df = pd.DataFrame(data)
print(df.tail(2))
Name Value
4 E 5
5 F 6
---
7.
df.info()Provides a concise summary of the DataFrame, including data types and non-null values.
import pandas as pd
import numpy as np
data = {'col1': [1, 2, 3], 'col2': [4.0, 5.0, np.nan], 'col3': ['A', 'B', 'C']}
df = pd.DataFrame(data)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 col1 3 non-null int64
1 col2 2 non-null float64
2 col3 3 non-null object
dtypes: float64(1), int64(1), object(1)
memory usage: 200.0+ bytes
---
8.
df.shapeReturns a tuple representing the dimensionality (rows, columns) of the DataFrame.
import pandas as pd
df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]})
print(df.shape)
(2, 3)
#DataInspection #PandasBasics
---
9.
df.describe()Generates descriptive statistics for numerical columns (count, mean, std, min, max, etc.).
import pandas as pd
df = pd.DataFrame({'Age': [22, 38, 26, 35, 29]})
print(df.describe())
❤2