Data Science Machine Learning Data Analysis
38.9K subscribers
3.71K photos
31 videos
39 files
1.28K links
ads: @HusseinSheikho

This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
Download Telegram
Data Science Machine Learning Data Analysis
Photo
### 4. TensorRT Optimization
# Convert ONNX to TensorRT
trt_logger = trt.Logger(trt.Logger.WARNING)
with trt.Builder(trt_logger) as builder:
with builder.create_network(1) as network:
with trt.OnnxParser(network, trt_logger) as parser:
with open("model.onnx", "rb") as model:
parser.parse(model.read())
engine = builder.build_cuda_engine(network)


---

## ๐Ÿ”น PyTorch Ecosystem
### 1. TorchVision
from torchvision.models import efficientnet_b0
from torchvision.ops import nms, roi_align

# Pretrained models
model = efficientnet_b0(pretrained=True)

# Computer vision ops
boxes = torch.tensor([[10, 20, 50, 60], [15, 25, 40, 70]])
scores = torch.tensor([0.9, 0.8])
keep = nms(boxes, scores, iou_threshold=0.5)


### 2. TorchText
from torchtext.data import Field, BucketIterator
from torchtext.datasets import IMDB

# Define fields
TEXT = Field(tokenize='spacy', lower=True, include_lengths=True)
LABEL = Field(sequential=False, dtype=torch.float)

# Load dataset
train_data, test_data = IMDB.splits(TEXT, LABEL)

# Build vocabulary
TEXT.build_vocab(train_data, max_size=25000)
LABEL.build_vocab(train_data)


### 3. TorchAudio
import torchaudio
import torchaudio.transforms as T

# Load audio
waveform, sample_rate = torchaudio.load('audio.wav')

# Spectrogram
spectrogram = T.Spectrogram()(waveform)

# MFCC
mfcc = T.MFCC(sample_rate=sample_rate)(waveform)

# Audio augmentation
augmented = T.TimeStretch()(waveform, n_freq=0.5)


---

## ๐Ÿ”น Best Practices Summary
1. For GNNs: Normalize node features and use appropriate pooling
2. For Neural ODEs: Monitor ODE solver statistics during training
3. For Interpretability: Combine multiple explanation methods
4. For Deployment: Profile models before deployment (latency/throughput)
5. For Production: Implement monitoring for model drift

---

### ๐Ÿ“Œ Final Thoughts
Congratulations on completing this comprehensive PyTorch journey! You've learned:

โœ”๏ธ Core PyTorch fundamentals
โœ”๏ธ Deep neural networks & CNNs
โœ”๏ธ Sequence modeling with RNNs/Transformers
โœ”๏ธ Generative models & reinforcement learning
โœ”๏ธ Advanced architectures & deployment

#PyTorch #DeepLearning #MachineLearning ๐ŸŽ“๐Ÿš€

Final Practice Exercises:
1. Implement a GNN for molecular property prediction
2. Train a Neural ODE on irregularly-sampled time series
3. Deploy a model with TorchServe and create a monitoring dashboard
4. Compare SHAP and Integrated Gradients for your CNN model
5. Optimize a transformer model with TensorRT

# Molecular GNN starter
class MolecularGNN(nn.Module):
def __init__(self, node_features, edge_features, hidden_dim):
super().__init__()
self.node_encoder = nn.Linear(node_features, hidden_dim)
self.edge_encoder = nn.Linear(edge_features, hidden_dim)
self.conv = tg.nn.MessagePassing(aggr='mean')

def forward(self, data):
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
x = self.node_encoder(x)
edge_attr = self.edge_encoder(edge_attr)
return self.conv(x, edge_index, edge_attr)
โค5
๐ŸŒŸ Vision Transformer (ViT) Tutorial โ€“ Part 2: Implementing ViT from Scratch in PyTorch

Let's start: https://hackmd.io/@husseinsheikho/vit-2

#VisionTransformer #ViTFromScratch #PyTorch #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #CodingTutorial #AttentionIsAllYouNeed


โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
โค2
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1
๐Ÿ”ฅ Trending Repository: LMCache

๐Ÿ“ Description: Supercharge Your LLM with the Fastest KV Cache Layer

๐Ÿ”— Repository URL: https://github.com/LMCache/LMCache

๐ŸŒ Website: https://lmcache.ai/

๐Ÿ“– Readme: https://github.com/LMCache/LMCache#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 4.3K stars
๐Ÿ‘€ Watchers: 24
๐Ÿด Forks: 485 forks

๐Ÿ’ป Programming Languages: Python - Cuda - Shell

๐Ÿท๏ธ Related Topics:
#fast #amd #cuda #inference #pytorch #speed #rocm #kv_cache #llm #vllm


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: supervision

๐Ÿ“ Description: We write your reusable computer vision tools. ๐Ÿ’œ

๐Ÿ”— Repository URL: https://github.com/roboflow/supervision

๐ŸŒ Website: https://supervision.roboflow.com

๐Ÿ“– Readme: https://github.com/roboflow/supervision#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 34K stars
๐Ÿ‘€ Watchers: 211
๐Ÿด Forks: 2.7K forks

๐Ÿ’ป Programming Languages: Python

๐Ÿท๏ธ Related Topics:
#python #tracking #machine_learning #computer_vision #deep_learning #metrics #tensorflow #image_processing #pytorch #video_processing #yolo #classification #coco #object_detection #hacktoberfest #pascal_voc #low_code #instance_segmentation #oriented_bounding_box


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: vllm

๐Ÿ“ Description: A high-throughput and memory-efficient inference and serving engine for LLMs

๐Ÿ”— Repository URL: https://github.com/vllm-project/vllm

๐ŸŒ Website: https://docs.vllm.ai

๐Ÿ“– Readme: https://github.com/vllm-project/vllm#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 55.5K stars
๐Ÿ‘€ Watchers: 428
๐Ÿด Forks: 9.4K forks

๐Ÿ’ป Programming Languages: Python - Cuda - C++ - Shell - C - CMake

๐Ÿท๏ธ Related Topics:
#amd #cuda #inference #pytorch #transformer #llama #gpt #rocm #model_serving #tpu #hpu #mlops #xpu #llm #inferentia #llmops #llm_serving #qwen #deepseek #trainium


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
โค3
๐Ÿ”ฅ Trending Repository: LLMs-from-scratch

๐Ÿ“ Description: Implement a ChatGPT-like LLM in PyTorch from scratch, step by step

๐Ÿ”— Repository URL: https://github.com/rasbt/LLMs-from-scratch

๐ŸŒ Website: https://amzn.to/4fqvn0D

๐Ÿ“– Readme: https://github.com/rasbt/LLMs-from-scratch#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 64.4K stars
๐Ÿ‘€ Watchers: 589
๐Ÿด Forks: 9K forks

๐Ÿ’ป Programming Languages: Jupyter Notebook - Python

๐Ÿท๏ธ Related Topics:
#python #machine_learning #ai #deep_learning #pytorch #artificial_intelligence #transformer #gpt #language_model #from_scratch #large_language_models #llm #chatgpt


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: LLMs-from-scratch

๐Ÿ“ Description: Implement a ChatGPT-like LLM in PyTorch from scratch, step by step

๐Ÿ”— Repository URL: https://github.com/rasbt/LLMs-from-scratch

๐ŸŒ Website: https://amzn.to/4fqvn0D

๐Ÿ“– Readme: https://github.com/rasbt/LLMs-from-scratch#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 68.3K stars
๐Ÿ‘€ Watchers: 613
๐Ÿด Forks: 9.6K forks

๐Ÿ’ป Programming Languages: Jupyter Notebook - Python

๐Ÿท๏ธ Related Topics:
#python #machine_learning #ai #deep_learning #pytorch #artificial_intelligence #transformer #gpt #language_model #from_scratch #large_language_models #llm #chatgpt


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ“Œ PyTorch Tutorial for Beginners: Build a Multiple Regression Model from Scratch

๐Ÿ—‚ Category: DEEP LEARNING

๐Ÿ•’ Date: 2025-11-19 | โฑ๏ธ Read time: 14 min read

Dive into PyTorch with this hands-on tutorial for beginners. Learn to build a multiple regression model from the ground up using a 3-layer neural network. This guide provides a practical, step-by-step approach to machine learning with PyTorch, ideal for those new to the framework.

#PyTorch #MachineLearning #NeuralNetwork #Regression #Python
โค1