Data Science Machine Learning Data Analysis
Photo
### 4. TensorRT Optimization
---
## ๐น PyTorch Ecosystem
### 1. TorchVision
### 2. TorchText
### 3. TorchAudio
---
## ๐น Best Practices Summary
1. For GNNs: Normalize node features and use appropriate pooling
2. For Neural ODEs: Monitor ODE solver statistics during training
3. For Interpretability: Combine multiple explanation methods
4. For Deployment: Profile models before deployment (latency/throughput)
5. For Production: Implement monitoring for model drift
---
### ๐ Final Thoughts
Congratulations on completing this comprehensive PyTorch journey! You've learned:
โ๏ธ Core PyTorch fundamentals
โ๏ธ Deep neural networks & CNNs
โ๏ธ Sequence modeling with RNNs/Transformers
โ๏ธ Generative models & reinforcement learning
โ๏ธ Advanced architectures & deployment
#PyTorch #DeepLearning #MachineLearning ๐๐
Final Practice Exercises:
1. Implement a GNN for molecular property prediction
2. Train a Neural ODE on irregularly-sampled time series
3. Deploy a model with TorchServe and create a monitoring dashboard
4. Compare SHAP and Integrated Gradients for your CNN model
5. Optimize a transformer model with TensorRT
# Convert ONNX to TensorRT
trt_logger = trt.Logger(trt.Logger.WARNING)
with trt.Builder(trt_logger) as builder:
with builder.create_network(1) as network:
with trt.OnnxParser(network, trt_logger) as parser:
with open("model.onnx", "rb") as model:
parser.parse(model.read())
engine = builder.build_cuda_engine(network)
---
## ๐น PyTorch Ecosystem
### 1. TorchVision
from torchvision.models import efficientnet_b0
from torchvision.ops import nms, roi_align
# Pretrained models
model = efficientnet_b0(pretrained=True)
# Computer vision ops
boxes = torch.tensor([[10, 20, 50, 60], [15, 25, 40, 70]])
scores = torch.tensor([0.9, 0.8])
keep = nms(boxes, scores, iou_threshold=0.5)
### 2. TorchText
from torchtext.data import Field, BucketIterator
from torchtext.datasets import IMDB
# Define fields
TEXT = Field(tokenize='spacy', lower=True, include_lengths=True)
LABEL = Field(sequential=False, dtype=torch.float)
# Load dataset
train_data, test_data = IMDB.splits(TEXT, LABEL)
# Build vocabulary
TEXT.build_vocab(train_data, max_size=25000)
LABEL.build_vocab(train_data)
### 3. TorchAudio
import torchaudio
import torchaudio.transforms as T
# Load audio
waveform, sample_rate = torchaudio.load('audio.wav')
# Spectrogram
spectrogram = T.Spectrogram()(waveform)
# MFCC
mfcc = T.MFCC(sample_rate=sample_rate)(waveform)
# Audio augmentation
augmented = T.TimeStretch()(waveform, n_freq=0.5)
---
## ๐น Best Practices Summary
1. For GNNs: Normalize node features and use appropriate pooling
2. For Neural ODEs: Monitor ODE solver statistics during training
3. For Interpretability: Combine multiple explanation methods
4. For Deployment: Profile models before deployment (latency/throughput)
5. For Production: Implement monitoring for model drift
---
### ๐ Final Thoughts
Congratulations on completing this comprehensive PyTorch journey! You've learned:
โ๏ธ Core PyTorch fundamentals
โ๏ธ Deep neural networks & CNNs
โ๏ธ Sequence modeling with RNNs/Transformers
โ๏ธ Generative models & reinforcement learning
โ๏ธ Advanced architectures & deployment
#PyTorch #DeepLearning #MachineLearning ๐๐
Final Practice Exercises:
1. Implement a GNN for molecular property prediction
2. Train a Neural ODE on irregularly-sampled time series
3. Deploy a model with TorchServe and create a monitoring dashboard
4. Compare SHAP and Integrated Gradients for your CNN model
5. Optimize a transformer model with TensorRT
# Molecular GNN starter
class MolecularGNN(nn.Module):
def __init__(self, node_features, edge_features, hidden_dim):
super().__init__()
self.node_encoder = nn.Linear(node_features, hidden_dim)
self.edge_encoder = nn.Linear(edge_features, hidden_dim)
self.conv = tg.nn.MessagePassing(aggr='mean')
def forward(self, data):
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
x = self.node_encoder(x)
edge_attr = self.edge_encoder(edge_attr)
return self.conv(x, edge_index, edge_attr)
โค5
๐ Vision Transformer (ViT) Tutorial โ Part 2: Implementing ViT from Scratch in PyTorch
Let's start: https://hackmd.io/@husseinsheikho/vit-2
Let's start: https://hackmd.io/@husseinsheikho/vit-2
#VisionTransformer #ViTFromScratch #PyTorch #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #CodingTutorial #AttentionIsAllYouNeed
โ๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
โค2
PyTorch Masterclass: Part 1 โ Foundations of Deep Learning with PyTorch
Duration: ~120 minutes
Link: https://hackmd.io/@husseinsheikho/pytorch-1
https://t.iss.one/DataScienceM๐ฐ
Duration: ~120 minutes
Link: https://hackmd.io/@husseinsheikho/pytorch-1
#PyTorch #DeepLearning #MachineLearning #AI #NeuralNetworks #DataScience #Python #Tensors #Autograd #Backpropagation #GradientDescent #AIForBeginners #PyTorchTutorial #MachineLearningEngineer
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค7
PyTorch Masterclass: Part 2 โ Deep Learning for Computer Vision with PyTorch
Duration: ~60 minutes
Link: https://hackmd.io/@husseinsheikho/pytorch-2
https://t.iss.one/DataScienceM๐ฏ
Duration: ~60 minutes
Link: https://hackmd.io/@husseinsheikho/pytorch-2
#PyTorch #ComputerVision #CNN #DeepLearning #TransferLearning #CIFAR10 #ImageClassification #DataLoaders #Transforms #ResNet #EfficientNet #PyTorchVision #AI #MachineLearning #ConvolutionalNeuralNetworks #DataAugmentation #PretrainedModels
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค7
PyTorch Masterclass: Part 3 โ Deep Learning for Natural Language Processing with PyTorch
Duration: ~120 minutes
Link A: https://hackmd.io/@husseinsheikho/pytorch-3a
Link B: https://hackmd.io/@husseinsheikho/pytorch-3b
https://t.iss.one/DataScienceMโ ๏ธ
Duration: ~120 minutes
Link A: https://hackmd.io/@husseinsheikho/pytorch-3a
Link B: https://hackmd.io/@husseinsheikho/pytorch-3b
#PyTorch #NLP #RNN #LSTM #GRU #Transformers #Attention #NaturalLanguageProcessing #TextClassification #SentimentAnalysis #WordEmbeddings #DeepLearning #MachineLearning #AI #SequenceModeling #BERT #GPT #TextProcessing #PyTorchNLP
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2
PyTorch Masterclass: Part 4 โ Generative Models with PyTorch
Duration: ~120 minutes
Link A: https://hackmd.io/@husseinsheikho/pytorch-4A
Link B: https://hackmd.io/@husseinsheikho/pytorch-4B
https://t.iss.one/DataScienceM๐
Duration: ~120 minutes
Link A: https://hackmd.io/@husseinsheikho/pytorch-4A
Link B: https://hackmd.io/@husseinsheikho/pytorch-4B
#PyTorch #GenerativeAI #GANs #VAEs #DiffusionModels #Autoencoders #TextToImage #DeepLearning #MachineLearning #AI #GenerativeAdversarialNetworks #VariationalAutoencoders #StableDiffusion #DALLE #ImageGeneration #MusicGeneration #AudioSynthesis #LatentSpace #PyTorchGenerative
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2
PyTorch Masterclass: Part 5 โ Reinforcement Learning with PyTorch
Duration: ~90 minutes
LINK: https://hackmd.io/@husseinsheikho/pytorch-5
https://t.iss.one/DataScienceM๐พ
Duration: ~90 minutes
LINK: https://hackmd.io/@husseinsheikho/pytorch-5
#PyTorch #ReinforcementLearning #RL #DeepRL #Qlearning #DQN #PPO #DDPG #MarkovDecisionProcesses #AI #MachineLearning #DeepLearning #ReinforcementLearning #PyTorchRL
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1
๐ฅ Trending Repository: LMCache
๐ Description: Supercharge Your LLM with the Fastest KV Cache Layer
๐ Repository URL: https://github.com/LMCache/LMCache
๐ Website: https://lmcache.ai/
๐ Readme: https://github.com/LMCache/LMCache#readme
๐ Statistics:
๐ Stars: 4.3K stars
๐ Watchers: 24
๐ด Forks: 485 forks
๐ป Programming Languages: Python - Cuda - Shell
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: Supercharge Your LLM with the Fastest KV Cache Layer
๐ Repository URL: https://github.com/LMCache/LMCache
๐ Website: https://lmcache.ai/
๐ Readme: https://github.com/LMCache/LMCache#readme
๐ Statistics:
๐ Stars: 4.3K stars
๐ Watchers: 24
๐ด Forks: 485 forks
๐ป Programming Languages: Python - Cuda - Shell
๐ท๏ธ Related Topics:
#fast #amd #cuda #inference #pytorch #speed #rocm #kv_cache #llm #vllm
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: supervision
๐ Description: We write your reusable computer vision tools. ๐
๐ Repository URL: https://github.com/roboflow/supervision
๐ Website: https://supervision.roboflow.com
๐ Readme: https://github.com/roboflow/supervision#readme
๐ Statistics:
๐ Stars: 34K stars
๐ Watchers: 211
๐ด Forks: 2.7K forks
๐ป Programming Languages: Python
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: We write your reusable computer vision tools. ๐
๐ Repository URL: https://github.com/roboflow/supervision
๐ Website: https://supervision.roboflow.com
๐ Readme: https://github.com/roboflow/supervision#readme
๐ Statistics:
๐ Stars: 34K stars
๐ Watchers: 211
๐ด Forks: 2.7K forks
๐ป Programming Languages: Python
๐ท๏ธ Related Topics:
#python #tracking #machine_learning #computer_vision #deep_learning #metrics #tensorflow #image_processing #pytorch #video_processing #yolo #classification #coco #object_detection #hacktoberfest #pascal_voc #low_code #instance_segmentation #oriented_bounding_box
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: vllm
๐ Description: A high-throughput and memory-efficient inference and serving engine for LLMs
๐ Repository URL: https://github.com/vllm-project/vllm
๐ Website: https://docs.vllm.ai
๐ Readme: https://github.com/vllm-project/vllm#readme
๐ Statistics:
๐ Stars: 55.5K stars
๐ Watchers: 428
๐ด Forks: 9.4K forks
๐ป Programming Languages: Python - Cuda - C++ - Shell - C - CMake
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: A high-throughput and memory-efficient inference and serving engine for LLMs
๐ Repository URL: https://github.com/vllm-project/vllm
๐ Website: https://docs.vllm.ai
๐ Readme: https://github.com/vllm-project/vllm#readme
๐ Statistics:
๐ Stars: 55.5K stars
๐ Watchers: 428
๐ด Forks: 9.4K forks
๐ป Programming Languages: Python - Cuda - C++ - Shell - C - CMake
๐ท๏ธ Related Topics:
#amd #cuda #inference #pytorch #transformer #llama #gpt #rocm #model_serving #tpu #hpu #mlops #xpu #llm #inferentia #llmops #llm_serving #qwen #deepseek #trainium
==================================
๐ง By: https://t.iss.one/DataScienceM
โค3
๐ฅ Trending Repository: LLMs-from-scratch
๐ Description: Implement a ChatGPT-like LLM in PyTorch from scratch, step by step
๐ Repository URL: https://github.com/rasbt/LLMs-from-scratch
๐ Website: https://amzn.to/4fqvn0D
๐ Readme: https://github.com/rasbt/LLMs-from-scratch#readme
๐ Statistics:
๐ Stars: 64.4K stars
๐ Watchers: 589
๐ด Forks: 9K forks
๐ป Programming Languages: Jupyter Notebook - Python
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: Implement a ChatGPT-like LLM in PyTorch from scratch, step by step
๐ Repository URL: https://github.com/rasbt/LLMs-from-scratch
๐ Website: https://amzn.to/4fqvn0D
๐ Readme: https://github.com/rasbt/LLMs-from-scratch#readme
๐ Statistics:
๐ Stars: 64.4K stars
๐ Watchers: 589
๐ด Forks: 9K forks
๐ป Programming Languages: Jupyter Notebook - Python
๐ท๏ธ Related Topics:
#python #machine_learning #ai #deep_learning #pytorch #artificial_intelligence #transformer #gpt #language_model #from_scratch #large_language_models #llm #chatgpt
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: LLMs-from-scratch
๐ Description: Implement a ChatGPT-like LLM in PyTorch from scratch, step by step
๐ Repository URL: https://github.com/rasbt/LLMs-from-scratch
๐ Website: https://amzn.to/4fqvn0D
๐ Readme: https://github.com/rasbt/LLMs-from-scratch#readme
๐ Statistics:
๐ Stars: 68.3K stars
๐ Watchers: 613
๐ด Forks: 9.6K forks
๐ป Programming Languages: Jupyter Notebook - Python
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: Implement a ChatGPT-like LLM in PyTorch from scratch, step by step
๐ Repository URL: https://github.com/rasbt/LLMs-from-scratch
๐ Website: https://amzn.to/4fqvn0D
๐ Readme: https://github.com/rasbt/LLMs-from-scratch#readme
๐ Statistics:
๐ Stars: 68.3K stars
๐ Watchers: 613
๐ด Forks: 9.6K forks
๐ป Programming Languages: Jupyter Notebook - Python
๐ท๏ธ Related Topics:
#python #machine_learning #ai #deep_learning #pytorch #artificial_intelligence #transformer #gpt #language_model #from_scratch #large_language_models #llm #chatgpt
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ PyTorch Tutorial for Beginners: Build a Multiple Regression Model from Scratch
๐ Category: DEEP LEARNING
๐ Date: 2025-11-19 | โฑ๏ธ Read time: 14 min read
Dive into PyTorch with this hands-on tutorial for beginners. Learn to build a multiple regression model from the ground up using a 3-layer neural network. This guide provides a practical, step-by-step approach to machine learning with PyTorch, ideal for those new to the framework.
#PyTorch #MachineLearning #NeuralNetwork #Regression #Python
๐ Category: DEEP LEARNING
๐ Date: 2025-11-19 | โฑ๏ธ Read time: 14 min read
Dive into PyTorch with this hands-on tutorial for beginners. Learn to build a multiple regression model from the ground up using a 3-layer neural network. This guide provides a practical, step-by-step approach to machine learning with PyTorch, ideal for those new to the framework.
#PyTorch #MachineLearning #NeuralNetwork #Regression #Python
โค1