Data Science Machine Learning Data Analysis
37.9K subscribers
2.81K photos
30 videos
39 files
1.26K links
This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning

Cross promotion and ads: @hussein_sheikho
Download Telegram
Data Science Machine Learning Data Analysis
Photo
# 📚 PyTorch Tutorial for Beginners - Part 6/6: Advanced Architectures & Production Deployment
#PyTorch #DeepLearning #GraphNNs #NeuralODEs #ModelServing #ExplainableAI

Welcome to the final part of our PyTorch series! This comprehensive lesson covers cutting-edge architectures, model interpretation techniques, production deployment strategies, and the broader PyTorch ecosystem.

---

## 🔹 Graph Neural Networks (GNNs)
### 1. Core Concepts
![GNN Architecture](https://distill.pub/2021/gnn-intro/images/gnn-overview.png)

Key Components:
- Node Features: Characteristics of each graph node
- Edge Features: Properties of connections between nodes
- Message Passing: Nodes aggregate information from neighbors
- Graph Pooling: Reduces graph to fixed-size representation

### 2. Implementing GNN with PyTorch Geometric
import torch_geometric as tg
from torch_geometric.nn import GCNConv, global_mean_pool

class GNN(torch.nn.Module):
def __init__(self, node_features, hidden_dim, num_classes):
super().__init__()
self.conv1 = GCNConv(node_features, hidden_dim)
self.conv2 = GCNConv(hidden_dim, hidden_dim)
self.classifier = nn.Linear(hidden_dim, num_classes)

def forward(self, data):
x, edge_index, batch = data.x, data.edge_index, data.batch

# Message passing
x = self.conv1(x, edge_index).relu()
x = self.conv2(x, edge_index)

# Graph-level pooling
x = global_mean_pool(x, batch)

# Classification
return self.classifier(x)

# Example usage
dataset = tg.datasets.Planetoid(root='/tmp/Cora', name='Cora')
model = GNN(node_features=dataset.num_node_features,
hidden_dim=64,
num_classes=dataset.num_classes).to(device)

# Specialized DataLoader
loader = tg.data.DataLoader(dataset, batch_size=32, shuffle=True)


### 3. Advanced GNN Architectures
# Graph Attention Network (GAT)
class GAT(torch.nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv1 = tg.nn.GATConv(in_channels, 8, heads=8, dropout=0.6)
self.conv2 = tg.nn.GATConv(8*8, out_channels, heads=1, concat=False, dropout=0.6)

def forward(self, data):
x, edge_index = data.x, data.edge_index
x = F.dropout(x, p=0.6, training=self.training)
x = F.elu(self.conv1(x, edge_index))
x = F.dropout(x, p=0.6, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)

# Graph Isomorphism Network (GIN)
class GIN(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super().__init__()
self.conv1 = tg.nn.GINConv(
nn.Sequential(
nn.Linear(in_channels, hidden_channels),
nn.ReLU(),
nn.Linear(hidden_channels, hidden_channels)
), train_eps=True)
self.conv2 = tg.nn.GINConv(
nn.Sequential(
nn.Linear(hidden_channels, hidden_channels),
nn.ReLU(),
nn.Linear(hidden_channels, out_channels)
), train_eps=True)

def forward(self, data):
x, edge_index = data.x, data.edge_index
x = self.conv1(x, edge_index)
x = F.relu(x)
x = self.conv2(x, edge_index)
return x


---

## 🔹 Neural Ordinary Differential Equations (Neural ODEs)
### 1. Core Concepts
![Neural ODE](https://miro.medium.com/max/1400/1*5q0q0jQ6Z5Z5Z5Z5Z5Z5Z5A.png)

- Continuous-depth networks: Replace discrete layers with ODE solver
- Memory efficiency: Constant memory cost regardless of "depth"
- Adaptive computation: ODE solver adjusts evaluation points
2
Data Science Machine Learning Data Analysis
Photo
### 4. TensorRT Optimization
# Convert ONNX to TensorRT
trt_logger = trt.Logger(trt.Logger.WARNING)
with trt.Builder(trt_logger) as builder:
with builder.create_network(1) as network:
with trt.OnnxParser(network, trt_logger) as parser:
with open("model.onnx", "rb") as model:
parser.parse(model.read())
engine = builder.build_cuda_engine(network)


---

## 🔹 PyTorch Ecosystem
### 1. TorchVision
from torchvision.models import efficientnet_b0
from torchvision.ops import nms, roi_align

# Pretrained models
model = efficientnet_b0(pretrained=True)

# Computer vision ops
boxes = torch.tensor([[10, 20, 50, 60], [15, 25, 40, 70]])
scores = torch.tensor([0.9, 0.8])
keep = nms(boxes, scores, iou_threshold=0.5)


### 2. TorchText
from torchtext.data import Field, BucketIterator
from torchtext.datasets import IMDB

# Define fields
TEXT = Field(tokenize='spacy', lower=True, include_lengths=True)
LABEL = Field(sequential=False, dtype=torch.float)

# Load dataset
train_data, test_data = IMDB.splits(TEXT, LABEL)

# Build vocabulary
TEXT.build_vocab(train_data, max_size=25000)
LABEL.build_vocab(train_data)


### 3. TorchAudio
import torchaudio
import torchaudio.transforms as T

# Load audio
waveform, sample_rate = torchaudio.load('audio.wav')

# Spectrogram
spectrogram = T.Spectrogram()(waveform)

# MFCC
mfcc = T.MFCC(sample_rate=sample_rate)(waveform)

# Audio augmentation
augmented = T.TimeStretch()(waveform, n_freq=0.5)


---

## 🔹 Best Practices Summary
1. For GNNs: Normalize node features and use appropriate pooling
2. For Neural ODEs: Monitor ODE solver statistics during training
3. For Interpretability: Combine multiple explanation methods
4. For Deployment: Profile models before deployment (latency/throughput)
5. For Production: Implement monitoring for model drift

---

### 📌 Final Thoughts
Congratulations on completing this comprehensive PyTorch journey! You've learned:

✔️ Core PyTorch fundamentals
✔️ Deep neural networks & CNNs
✔️ Sequence modeling with RNNs/Transformers
✔️ Generative models & reinforcement learning
✔️ Advanced architectures & deployment

#PyTorch #DeepLearning #MachineLearning 🎓🚀

Final Practice Exercises:
1. Implement a GNN for molecular property prediction
2. Train a Neural ODE on irregularly-sampled time series
3. Deploy a model with TorchServe and create a monitoring dashboard
4. Compare SHAP and Integrated Gradients for your CNN model
5. Optimize a transformer model with TensorRT

# Molecular GNN starter
class MolecularGNN(nn.Module):
def __init__(self, node_features, edge_features, hidden_dim):
super().__init__()
self.node_encoder = nn.Linear(node_features, hidden_dim)
self.edge_encoder = nn.Linear(edge_features, hidden_dim)
self.conv = tg.nn.MessagePassing(aggr='mean')

def forward(self, data):
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
x = self.node_encoder(x)
edge_attr = self.edge_encoder(edge_attr)
return self.conv(x, edge_index, edge_attr)
5
🔥 Trending Repository: LMCache

📝 Description: Supercharge Your LLM with the Fastest KV Cache Layer

🔗 Repository URL: https://github.com/LMCache/LMCache

🌐 Website: https://lmcache.ai/

📖 Readme: https://github.com/LMCache/LMCache#readme

📊 Statistics:
🌟 Stars: 4.3K stars
👀 Watchers: 24
🍴 Forks: 485 forks

💻 Programming Languages: Python - Cuda - Shell

🏷️ Related Topics:
#fast #amd #cuda #inference #pytorch #speed #rocm #kv_cache #llm #vllm


==================================
🧠 By: https://t.iss.one/DataScienceM
🔥 Trending Repository: supervision

📝 Description: We write your reusable computer vision tools. 💜

🔗 Repository URL: https://github.com/roboflow/supervision

🌐 Website: https://supervision.roboflow.com

📖 Readme: https://github.com/roboflow/supervision#readme

📊 Statistics:
🌟 Stars: 34K stars
👀 Watchers: 211
🍴 Forks: 2.7K forks

💻 Programming Languages: Python

🏷️ Related Topics:
#python #tracking #machine_learning #computer_vision #deep_learning #metrics #tensorflow #image_processing #pytorch #video_processing #yolo #classification #coco #object_detection #hacktoberfest #pascal_voc #low_code #instance_segmentation #oriented_bounding_box


==================================
🧠 By: https://t.iss.one/DataScienceM
🔥 Trending Repository: vllm

📝 Description: A high-throughput and memory-efficient inference and serving engine for LLMs

🔗 Repository URL: https://github.com/vllm-project/vllm

🌐 Website: https://docs.vllm.ai

📖 Readme: https://github.com/vllm-project/vllm#readme

📊 Statistics:
🌟 Stars: 55.5K stars
👀 Watchers: 428
🍴 Forks: 9.4K forks

💻 Programming Languages: Python - Cuda - C++ - Shell - C - CMake

🏷️ Related Topics:
#amd #cuda #inference #pytorch #transformer #llama #gpt #rocm #model_serving #tpu #hpu #mlops #xpu #llm #inferentia #llmops #llm_serving #qwen #deepseek #trainium


==================================
🧠 By: https://t.iss.one/DataScienceM
3
🔥 Trending Repository: LLMs-from-scratch

📝 Description: Implement a ChatGPT-like LLM in PyTorch from scratch, step by step

🔗 Repository URL: https://github.com/rasbt/LLMs-from-scratch

🌐 Website: https://amzn.to/4fqvn0D

📖 Readme: https://github.com/rasbt/LLMs-from-scratch#readme

📊 Statistics:
🌟 Stars: 64.4K stars
👀 Watchers: 589
🍴 Forks: 9K forks

💻 Programming Languages: Jupyter Notebook - Python

🏷️ Related Topics:
#python #machine_learning #ai #deep_learning #pytorch #artificial_intelligence #transformer #gpt #language_model #from_scratch #large_language_models #llm #chatgpt


==================================
🧠 By: https://t.iss.one/DataScienceM
🔥 Trending Repository: LLMs-from-scratch

📝 Description: Implement a ChatGPT-like LLM in PyTorch from scratch, step by step

🔗 Repository URL: https://github.com/rasbt/LLMs-from-scratch

🌐 Website: https://amzn.to/4fqvn0D

📖 Readme: https://github.com/rasbt/LLMs-from-scratch#readme

📊 Statistics:
🌟 Stars: 68.3K stars
👀 Watchers: 613
🍴 Forks: 9.6K forks

💻 Programming Languages: Jupyter Notebook - Python

🏷️ Related Topics:
#python #machine_learning #ai #deep_learning #pytorch #artificial_intelligence #transformer #gpt #language_model #from_scratch #large_language_models #llm #chatgpt


==================================
🧠 By: https://t.iss.one/DataScienceM