Data Science Machine Learning Data Analysis
37.9K subscribers
2.79K photos
30 videos
39 files
1.26K links
This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning

Cross promotion and ads: @hussein_sheikho
Download Telegram
πŸ“š An Introduction to Optimization (2023)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/834

πŸ’¬ Tags: #Optimization

πŸ‘‰ BEST DATA SCIENCE CHANNELS ON TELEGRAM πŸ‘ˆ
πŸ‘8
SciPy.pdf
206.4 KB
Unlock the full power of SciPy with my comprehensive cheat sheet!
Master essential functions for:

Function optimization and solving equations

Linear algebra operations

ODE integration and statistical analysis

Signal processing and spatial data manipulation

Data clustering and distance computation ...and much more!


#Python #SciPy #MachineLearning #DataScience #CheatSheet #ArtificialIntelligence #Optimization #LinearAlgebra #SignalProcessing #BigData



πŸ’― BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘5
Topic: Python SciPy – From Easy to Top: Part 1 of 6: Introduction and Basics

---

1. What is SciPy?

β€’ SciPy is an open-source Python library used for scientific and technical computing.

β€’ Built on top of NumPy, it provides many user-friendly and efficient numerical routines such as routines for numerical integration, optimization, interpolation, eigenvalue problems, algebraic equations, and others.

---

2. Installing SciPy

If you don’t have SciPy installed yet, use:

pip install scipy


---

3. Importing SciPy Modules

SciPy is organized into sub-packages for different tasks. Example:

import scipy.integrate
import scipy.optimize
import scipy.linalg


---

4. Key SciPy Sub-packages

β€’ scipy.integrate β€” Numerical integration and ODE solvers.
β€’ scipy.optimize β€” Optimization and root finding.
β€’ scipy.linalg β€” Linear algebra routines (more advanced than NumPy’s).
β€’ scipy.signal β€” Signal processing.
β€’ scipy.fft β€” Fast Fourier Transforms.
β€’ scipy.stats β€” Statistical functions.

---

5. Basic Example: Numerical Integration

Calculate the integral of sin(x) from 0 to pi:

import numpy as np
from scipy import integrate

result, error = integrate.quad(np.sin, 0, np.pi)
print("Integral of sin(x) from 0 to pi:", result)


---

6. Basic Example: Root Finding

Find the root of the function f(x) = x^2 - 4:

from scipy import optimize

def f(x):
return x**2 - 4

root = optimize.root_scalar(f, bracket=[0, 3])
print("Root:", root.root)


---

7. SciPy vs NumPy

β€’ NumPy focuses on basic array operations and linear algebra.

β€’ SciPy extends functionality with advanced scientific algorithms.

---

8. Summary

β€’ SciPy is essential for scientific computing in Python.

β€’ It contains many specialized sub-packages.

β€’ Understanding SciPy’s structure helps solve complex numerical problems easily.

---

Exercise

β€’ Calculate the integral of e^(-x^2) from -infinity to +infinity using scipy.integrate.quad.

β€’ Find the root of cos(x) - x = 0 using scipy.optimize.root_scalar.

---

#Python #SciPy #ScientificComputing #NumericalIntegration #Optimization

https://t.iss.one/DataScienceM
❀3πŸ”₯1
Topic: Python SciPy – From Easy to Top: Part 3 of 6: Optimization Basics

---

1. What is Optimization?

β€’ Optimization is the process of finding the minimum or maximum of a function.

β€’ SciPy provides tools to solve these problems efficiently.

---

2. Using `scipy.optimize.minimize`

This function minimizes a scalar function of one or more variables.

Example: Minimize the function f(x) = (x - 3)^2

from scipy import optimize

def f(x):
return (x - 3)**2

result = optimize.minimize(f, x0=0)
print("Minimum value:", result.fun)
print("At x =", result.x)


---

**3. Minimizing Multivariable Functions**

Example: Minimize f(x, y) = (x - 2)^2 + (y + 3)^2

def f(vars):
x, y = vars
return (x - 2)**2 + (y + 3)**2

result = optimize.minimize(f, x0=[0, 0])
print("Minimum value:", result.fun)
print("At x, y =", result.x)


---

**4. Using Bounds and Constraints**

You can restrict the variables within bounds or constraints.

Example: Minimize f(x) = (x - 3)^2 with x between 0 and 5

result = optimize.minimize(f, x0=0, bounds=[(0, 5)])
print("Minimum with bounds:", result.fun)
print("At x =", result.x)


---

5. Root Finding with `optimize.root_scalar`

Find a root of a scalar function.

Example: Find root of f(x) = x^3 - 1 between 0 and 2

def f(x):
return x**3 - 1

root = optimize.root_scalar(f, bracket=[0, 2])
print("Root:", root.root)


---

6. Summary

β€’ SciPy’s optimization tools help find minima, maxima, and roots.

β€’ Supports single and multivariable problems with constraints.

---

Exercise

β€’ Minimize the function f(x) = x^4 - 3x^3 + 2 over the range \[-2, 3].

β€’ Find the root of f(x) = cos(x) - x near x=1.

---

#Python #SciPy #Optimization #RootFinding #ScientificComputing

https://t.iss.one/DataScienceM
❀3