Machine Learning
39.2K subscribers
3.83K photos
32 videos
41 files
1.3K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
📚 Calculus and Linear Algebra (2023)

🔗 Download Link: https://filelu.com/3lfmoylzu2ls

💬 Tags: #Calculus #LinearAlgebra

⛔️ interaction = books

Click here 👉: Surprise 🎁
❤‍🔥21
📚 Introduction To Linear Algebra (2022)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/67

💬 Tags: #LinearAlgebra

USEFUL CHANNELS FOR YOU
6👍4
📚 Linear Algebra Tools for Data Mining (2023)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/384

💬 Tags: #DataMining #LinearAlgebra

USEFUL CHANNELS FOR YOU
5👍4🔥1
📚 Linear Algebra (2023)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/577

💬 Tags: #LinearAlgebra

USEFUL CHANNELS FOR YOU
👍309🔥1
📚 Linear Algebra Done Right (2024)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/1196

💬 Tags: #LinearAlgebra

👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
👍10
SciPy.pdf
206.4 KB
Unlock the full power of SciPy with my comprehensive cheat sheet!
Master essential functions for:

Function optimization and solving equations

Linear algebra operations

ODE integration and statistical analysis

Signal processing and spatial data manipulation

Data clustering and distance computation ...and much more!


#Python #SciPy #MachineLearning #DataScience #CheatSheet #ArtificialIntelligence #Optimization #LinearAlgebra #SignalProcessing #BigData



💯 BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
Topic: Python SciPy – From Easy to Top: Part 4 of 6: Linear Algebra with SciPy

---

1. Introduction to Linear Algebra in SciPy

• Linear algebra is fundamental in scientific computing, machine learning, and data science.

• SciPy provides advanced linear algebra routines built on top of LAPACK and BLAS libraries.

• The main sub-package is scipy.linalg which extends NumPy’s linear algebra capabilities.

---

2. Basic Matrix Operations

You can create matrices using NumPy arrays:

import numpy as np

A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])


---

3. Matrix Addition and Multiplication

# Addition
C = A + B
print("Matrix Addition:\n", C)

# Element-wise Multiplication
D = A * B
print("Element-wise Multiplication:\n", D)

# Matrix Multiplication
E = np.dot(A, B)
print("Matrix Multiplication:\n", E)


---

4. Using `scipy.linalg` for Advanced Operations

Import SciPy linear algebra module:

from scipy import linalg


---

5. Matrix Inverse

Calculate the inverse of a matrix (if invertible):

inv_A = linalg.inv(A)
print("Inverse of A:\n", inv_A)


---

6. Determinant

Calculate the determinant:

det_A = linalg.det(A)
print("Determinant of A:", det_A)


---

7. Eigenvalues and Eigenvectors

Find eigenvalues and eigenvectors:

eigvals, eigvecs = linalg.eig(A)
print("Eigenvalues:\n", eigvals)
print("Eigenvectors:\n", eigvecs)


---

8. Solving Linear Systems

Solve Ax = b where b is a vector:

b = np.array([5, 11])
x = linalg.solve(A, b)
print("Solution x:\n", x)


---

9. Singular Value Decomposition (SVD)

Decompose matrix A into U, Σ, and V^T:

U, s, VT = linalg.svd(A)
print("U matrix:\n", U)
print("Singular values:", s)
print("V^T matrix:\n", VT)


---

10. LU Decomposition

Decompose matrix A into lower and upper triangular matrices:

P, L, U = linalg.lu(A)
print("P matrix:\n", P)
print("L matrix:\n", L)
print("U matrix:\n", U)


---

11. QR Decomposition

Factorize A into Q and R matrices:

Q, R = linalg.qr(A)
print("Q matrix:\n", Q)
print("R matrix:\n", R)


---

12. Norms of Vectors and Matrices

Calculate different norms:

# Vector norm
v = np.array([1, -2, 3])
norm_v = linalg.norm(v)
print("Vector norm:", norm_v)

# Matrix norm (Frobenius norm)
norm_A = linalg.norm(A, 'fro')
print("Matrix Frobenius norm:", norm_A)


---

13. Checking if a Matrix is Positive Definite

Try Cholesky decomposition:

try:
L = linalg.cholesky(A)
print("Matrix is positive definite")
except linalg.LinAlgError:
print("Matrix is not positive definite")


---

14. Summary

• SciPy’s linalg module provides extensive linear algebra tools beyond NumPy.

• Operations include inverse, determinant, eigenvalues, decompositions, and solving linear systems.

• These tools are essential for many scientific and engineering problems.

---

Exercise

• Compute the eigenvalues and eigenvectors of the matrix \[\[4, 2], \[1, 3]].

• Solve the system of equations represented by:

  2x + 3y = 8

  5x + 4y = 13

• Perform SVD on the matrix \[\[1, 0], \[0, -1]] and explain the singular values.

---

#Python #SciPy #LinearAlgebra #SVD #Decomposition #ScientificComputing

https://t.iss.one/DataScienceM
8
Python tip:
Use np.polyval() to evaluate a polynomial at specific values.

import numpy as np
poly_coeffs = np.array([3, 0, 1]) # Represents 3x^2 + 0x + 1
x_values = np.array([0, 1, 2])
y_values = np.polyval(poly_coeffs, x_values)
print(y_values) # Output: [ 1 4 13] (3*0^2+1, 3*1^2+1, 3*2^2+1)


Python tip:
Use np.polyfit() to find the coefficients of a polynomial that best fits a set of data points.

import numpy as np
x = np.array([0, 1, 2, 3])
y = np.array([0, 0.8, 0.9, 0.1])
coefficients = np.polyfit(x, y, 2) # Fit a 2nd degree polynomial
print(coefficients)


Python tip:
Use np.clip() to limit values in an array to a specified range, as an instance method.

import numpy as np
arr = np.array([1, 10, 3, 15, 6])
clipped_arr = arr.clip(min=3, max=10)
print(clipped_arr)


Python tip:
Use np.squeeze() to remove single-dimensional entries from the shape of an array.

import numpy as np
arr = np.zeros((1, 3, 1, 4))
squeezed_arr = np.squeeze(arr) # Removes axes of length 1
print(squeezed_arr.shape) # Output: (3, 4)


Python tip:
Create a new array with an inserted axis using np.expand_dims().

import numpy as np
arr = np.array([1, 2, 3]) # Shape (3,)
expanded_arr = np.expand_dims(arr, axis=0) # Add a new axis at position 0
print(expanded_arr.shape) # Output: (1, 3)


Python tip:
Use np.ptp() (peak-to-peak) to find the range (max - min) of an array.

import numpy as np
arr = np.array([1, 5, 2, 8, 3])
peak_to_peak = np.ptp(arr)
print(peak_to_peak) # Output: 7 (8 - 1)


Python tip:
Use np.prod() to calculate the product of array elements.

import numpy as np
arr = np.array([1, 2, 3, 4])
product = np.prod(arr)
print(product) # Output: 24 (1 * 2 * 3 * 4)


Python tip:
Use np.allclose() to compare two arrays for equality within a tolerance.

import numpy as np
a = np.array([1.0, 2.0])
b = np.array([1.00000000001, 2.0])
print(np.allclose(a, b)) # Output: True


Python tip:
Use np.array_split() to split an array into N approximately equal sub-arrays.

import numpy as np
arr = np.arange(7)
split_arr = np.array_split(arr, 3) # Split into 3 parts
print(split_arr)


#NumPyTips #PythonNumericalComputing #ArrayManipulation #DataScience #MachineLearning #PythonTips #NumPyForBeginners #Vectorization #LinearAlgebra #StatisticalAnalysis

━━━━━━━━━━━━━━━
By: @DataScienceM