Machine Learning
39.1K subscribers
3.8K photos
31 videos
41 files
1.3K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
📚 Computational Methods with MATLAB (2023)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/575

💬 Tags: #matlab

USEFUL CHANNELS FOR YOU
👍29🔥5
📚 Machine and Deep Learning Using MATLAB (2023)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/1161

💬 Tags: #ML #DEEPLEARNING #MATLAB

👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
👍71
📚 Mastering MATLAB (2024)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/1174

💬 Tags: #MATLAB

👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
👍8🌭1🏆1
📚 MATLAB for Machine Learning (2024)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/1183

💬 Tags: #MATLAB

👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
👍8👎1
📚 MATLAB Machine Learning Recipes (2024)

1️⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2️⃣ Download Book: https://t.iss.one/c/1854405158/1307

💬 Tags: #Matlab

✌️ BEST DATA SCIENCE CHANNELS ON TELEGRAM 🫰
Please open Telegram to view this post
VIEW IN TELEGRAM
👍51🔥1
📚 MATLAB for Machine Learning (2024)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/1511

💬 Tags: #MATLAB

👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
👍12
📚 Digital Image Denoising in MATLAB (2024)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/1661

💬 Tags: #matlab

👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
👍5
📚 MATLAB (2024)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/1986

💬 Tags: #MATLAB

USEFUL CHANNELS FOR YOU ⭐️
👍91
Top 30 MATLAB Image Processing Functions

#MATLAB #ImageProcessing #Basics

👇👇👇👇👇
Please open Telegram to view this post
VIEW IN TELEGRAM
Top 30 MATLAB Image Processing Functions

#MATLAB #ImageProcessing #Basics

#1. imread()
Reads an image from a file into a matrix.

img = imread('peppers.png');
disp('Image "peppers.png" loaded into variable "img".');

Image "peppers.png" loaded into variable "img".


#2. imshow()
Displays an image in a figure window.

img = imread('peppers.png');
imshow(img);
title('Peppers Image');

Output: A new figure window opens, displaying the 'peppers.png' image with the title "Peppers Image".


#3. imwrite()
Writes an image matrix to a file.

img = imread('cameraman.tif');
imwrite(img, 'my_cameraman.jpg');
disp('Image saved as my_cameraman.jpg');

Image saved as my_cameraman.jpg


#4. size()
Returns the dimensions of the image matrix (rows, columns, color channels).

rgb_img = imread('peppers.png');
gray_img = imread('cameraman.tif');
size_rgb = size(rgb_img);
size_gray = size(gray_img);
disp(['Size of RGB image: ', num2str(size_rgb)]);
disp(['Size of grayscale image: ', num2str(size_gray)]);

Size of RGB image: 384   512     3
Size of grayscale image: 256 256


#5. rgb2gray()
Converts an RGB color image to a grayscale intensity image.

rgb_img = imread('peppers.png');
gray_img = rgb2gray(rgb_img);
imshow(gray_img);
title('Grayscale Peppers');

Output: A figure window displays the grayscale version of the peppers image.

---
#MATLAB #ImageProcessing #Conversion #Transformation

#6. im2double()
Converts an image to double-precision format, scaling data to the range [0, 1].

img_uint8 = imread('cameraman.tif');
img_double = im2double(img_uint8);
disp(['Max value of original image: ', num2str(max(img_uint8(:)))]);
disp(['Max value of double image: ', num2str(max(img_double(:)))]);

Max value of original image: 253
Max value of double image: 0.99216


#7. imresize()
Resizes an image to a specified size.

img = imread('cameraman.tif');
resized_img = imresize(img, 0.5); % Resize to 50% of original size
imshow(resized_img);
title('Resized Cameraman');

Output: A figure window displays the cameraman image at half its original size.


#8. imrotate()
Rotates an image by a specified angle.

img = imread('cameraman.tif');
rotated_img = imrotate(img, 30, 'bilinear', 'crop');
imshow(rotated_img);
title('Rotated 30 Degrees');

Output: A figure window displays the cameraman image rotated by 30 degrees, cropped to the original size.


#9. imcrop()
Crops an image to a specified rectangle.

img = imread('peppers.png');
% [xmin ymin width height]
cropped_img = imcrop(img, [100 80 250 200]);
imshow(cropped_img);
title('Cropped Image');

Output: A figure window displays only the rectangular section specified from the peppers image.


#10. rgb2hsv()
Converts an RGB image to the Hue-Saturation-Value (HSV) color space.

rgb_img = imread('peppers.png');
hsv_img = rgb2hsv(rgb_img);
hue_channel = hsv_img(:,:,1); % Extract the Hue channel
imshow(hue_channel);
title('Hue Channel of Peppers Image');

Output: A figure window displays the Hue channel of the peppers image as a grayscale image.

---
#MATLAB #ImageProcessing #Enhancement

#11. imhist()
Displays the histogram of an image, showing the distribution of pixel intensity values.
1
gray_img = imread('pout.tif');
imhist(gray_img);
title('Histogram of a Low-Contrast Image');

Output: A figure window with a bar chart showing the intensity distribution of the 'pout.tif' image.


#12. histeq()
Enhances contrast using histogram equalization.

low_contrast_img = imread('pout.tif');
high_contrast_img = histeq(low_contrast_img);
imshow(high_contrast_img);
title('Histogram Equalized Image');

Output: A figure window displays a higher contrast version of the 'pout.tif' image.


#13. imadjust()
Adjusts image intensity values or colormap by mapping intensity values to new values.

img = imread('cameraman.tif');
adjusted_img = imadjust(img, [0.3 0.7], []);
imshow(adjusted_img);
title('Intensity Adjusted Image');

Output: A figure window showing a high-contrast version of the cameraman image, where intensities between 0.3 and 0.7 are stretched to the full [0, 1] range.


#14. imtranslate()
Translates (shifts) an image horizontally and vertically.

img = imread('cameraman.tif');
translated_img = imtranslate(img, [25, 15]); % Shift 25 pixels right, 15 pixels down
imshow(translated_img);
title('Translated Image');

Output: A figure window shows the cameraman image shifted to the right and down.


#15. imsharpen()
Sharpens an image using the unsharp masking method.

img = imread('peppers.png');
sharpened_img = imsharpen(img);
imshow(sharpened_img);
title('Sharpened Image');

Output: A figure window displays a crisper, more detailed version of the peppers image.

---
#MATLAB #ImageProcessing #Filtering #Noise

#16. imnoise()
Adds a specified type of noise to an image.

img = imread('cameraman.tif');
noisy_img = imnoise(img, 'salt & pepper', 0.02);
imshow(noisy_img);
title('Image with Salt & Pepper Noise');

Output: A figure window displays the cameraman image with random white and black pixels (noise).


#17. fspecial()
Creates a predefined 2-D filter kernel (e.g., for averaging, Gaussian blur, Laplacian).

h = fspecial('motion', 20, 45); % Create a motion blur filter
disp('Generated a 2D motion filter kernel.');
disp(h);

Generated a 2D motion filter kernel.
(Output is a matrix representing the filter kernel)


#18. imfilter()
Filters a multidimensional image with a specified filter kernel.

img = imread('cameraman.tif');
h = fspecial('motion', 20, 45);
motion_blur_img = imfilter(img, h, 'replicate');
imshow(motion_blur_img);
title('Motion Blurred Image');

Output: A figure window shows the cameraman image with a motion blur effect applied at a 45-degree angle.


#19. medfilt2()
Performs 2-D median filtering, which is excellent for removing 'salt & pepper' noise.

noisy_img = imnoise(imread('cameraman.tif'), 'salt & pepper', 0.02);
denoised_img = medfilt2(noisy_img);
imshow(denoised_img);
title('Denoised with Median Filter');

Output: A figure window shows the noisy image significantly cleaned up, with most salt & pepper noise removed.


#20. edge()
Finds edges in an intensity image using various algorithms (e.g., Sobel, Canny).