π An Introduction to Optimization (2023)
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/834
π¬ Tags: #Optimization
π BEST DATA SCIENCE CHANNELS ON TELEGRAM π
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/834
π¬ Tags: #Optimization
π BEST DATA SCIENCE CHANNELS ON TELEGRAM π
π8
Forwarded from Python | Machine Learning | Coding | R
SciPy.pdf
206.4 KB
Unlock the full power of SciPy with my comprehensive cheat sheet!
Master essential functions for:
Function optimization and solving equations
Linear algebra operations
ODE integration and statistical analysis
Signal processing and spatial data manipulation
Data clustering and distance computation ...and much more!
π― BEST DATA SCIENCE CHANNELS ON TELEGRAM π
Master essential functions for:
Function optimization and solving equations
Linear algebra operations
ODE integration and statistical analysis
Signal processing and spatial data manipulation
Data clustering and distance computation ...and much more!
#Python #SciPy #MachineLearning #DataScience #CheatSheet #ArtificialIntelligence #Optimization #LinearAlgebra #SignalProcessing #BigData
Please open Telegram to view this post
VIEW IN TELEGRAM
π5
Topic: Python SciPy β From Easy to Top: Part 1 of 6: Introduction and Basics
---
1. What is SciPy?
β’ SciPy is an open-source Python library used for scientific and technical computing.
β’ Built on top of NumPy, it provides many user-friendly and efficient numerical routines such as routines for numerical integration, optimization, interpolation, eigenvalue problems, algebraic equations, and others.
---
2. Installing SciPy
If you donβt have SciPy installed yet, use:
---
3. Importing SciPy Modules
SciPy is organized into sub-packages for different tasks. Example:
---
4. Key SciPy Sub-packages
β’
β’
β’
β’
β’
β’
---
5. Basic Example: Numerical Integration
Calculate the integral of sin(x) from 0 to pi:
---
6. Basic Example: Root Finding
Find the root of the function f(x) = x^2 - 4:
---
7. SciPy vs NumPy
β’ NumPy focuses on basic array operations and linear algebra.
β’ SciPy extends functionality with advanced scientific algorithms.
---
8. Summary
β’ SciPy is essential for scientific computing in Python.
β’ It contains many specialized sub-packages.
β’ Understanding SciPyβs structure helps solve complex numerical problems easily.
---
Exercise
β’ Calculate the integral of e^(-x^2) from -infinity to +infinity using
β’ Find the root of cos(x) - x = 0 using
---
#Python #SciPy #ScientificComputing #NumericalIntegration #Optimization
https://t.iss.one/DataScienceM
---
1. What is SciPy?
β’ SciPy is an open-source Python library used for scientific and technical computing.
β’ Built on top of NumPy, it provides many user-friendly and efficient numerical routines such as routines for numerical integration, optimization, interpolation, eigenvalue problems, algebraic equations, and others.
---
2. Installing SciPy
If you donβt have SciPy installed yet, use:
pip install scipy
---
3. Importing SciPy Modules
SciPy is organized into sub-packages for different tasks. Example:
import scipy.integrate
import scipy.optimize
import scipy.linalg
---
4. Key SciPy Sub-packages
β’
scipy.integrate
β Numerical integration and ODE solvers.β’
scipy.optimize
β Optimization and root finding.β’
scipy.linalg
β Linear algebra routines (more advanced than NumPyβs).β’
scipy.signal
β Signal processing.β’
scipy.fft
β Fast Fourier Transforms.β’
scipy.stats
β Statistical functions.---
5. Basic Example: Numerical Integration
Calculate the integral of sin(x) from 0 to pi:
import numpy as np
from scipy import integrate
result, error = integrate.quad(np.sin, 0, np.pi)
print("Integral of sin(x) from 0 to pi:", result)
---
6. Basic Example: Root Finding
Find the root of the function f(x) = x^2 - 4:
from scipy import optimize
def f(x):
return x**2 - 4
root = optimize.root_scalar(f, bracket=[0, 3])
print("Root:", root.root)
---
7. SciPy vs NumPy
β’ NumPy focuses on basic array operations and linear algebra.
β’ SciPy extends functionality with advanced scientific algorithms.
---
8. Summary
β’ SciPy is essential for scientific computing in Python.
β’ It contains many specialized sub-packages.
β’ Understanding SciPyβs structure helps solve complex numerical problems easily.
---
Exercise
β’ Calculate the integral of e^(-x^2) from -infinity to +infinity using
scipy.integrate.quad
.β’ Find the root of cos(x) - x = 0 using
scipy.optimize.root_scalar
.---
#Python #SciPy #ScientificComputing #NumericalIntegration #Optimization
https://t.iss.one/DataScienceM
β€3π₯1
Topic: Python SciPy β From Easy to Top: Part 3 of 6: Optimization Basics
---
1. What is Optimization?
β’ Optimization is the process of finding the minimum or maximum of a function.
β’ SciPy provides tools to solve these problems efficiently.
---
2. Using `scipy.optimize.minimize`
This function minimizes a scalar function of one or more variables.
Example: Minimize the function f(x) = (x - 3)^2
---
**3. Minimizing Multivariable Functions**
Example: Minimize f(x, y) = (x - 2)^2 + (y + 3)^2
---
**4. Using Bounds and Constraints**
You can restrict the variables within bounds or constraints.
Example: Minimize f(x) = (x - 3)^2 with x between 0 and 5
---
5. Root Finding with `optimize.root_scalar`
Find a root of a scalar function.
Example: Find root of f(x) = x^3 - 1 between 0 and 2
---
6. Summary
β’ SciPyβs optimization tools help find minima, maxima, and roots.
β’ Supports single and multivariable problems with constraints.
---
Exercise
β’ Minimize the function f(x) = x^4 - 3x^3 + 2 over the range \[-2, 3].
β’ Find the root of f(x) = cos(x) - x near x=1.
---
#Python #SciPy #Optimization #RootFinding #ScientificComputing
https://t.iss.one/DataScienceM
---
1. What is Optimization?
β’ Optimization is the process of finding the minimum or maximum of a function.
β’ SciPy provides tools to solve these problems efficiently.
---
2. Using `scipy.optimize.minimize`
This function minimizes a scalar function of one or more variables.
Example: Minimize the function f(x) = (x - 3)^2
from scipy import optimize
def f(x):
return (x - 3)**2
result = optimize.minimize(f, x0=0)
print("Minimum value:", result.fun)
print("At x =", result.x)
---
**3. Minimizing Multivariable Functions**
Example: Minimize f(x, y) = (x - 2)^2 + (y + 3)^2
def f(vars):
x, y = vars
return (x - 2)**2 + (y + 3)**2
result = optimize.minimize(f, x0=[0, 0])
print("Minimum value:", result.fun)
print("At x, y =", result.x)
---
**4. Using Bounds and Constraints**
You can restrict the variables within bounds or constraints.
Example: Minimize f(x) = (x - 3)^2 with x between 0 and 5
result = optimize.minimize(f, x0=0, bounds=[(0, 5)])
print("Minimum with bounds:", result.fun)
print("At x =", result.x)
---
5. Root Finding with `optimize.root_scalar`
Find a root of a scalar function.
Example: Find root of f(x) = x^3 - 1 between 0 and 2
def f(x):
return x**3 - 1
root = optimize.root_scalar(f, bracket=[0, 2])
print("Root:", root.root)
---
6. Summary
β’ SciPyβs optimization tools help find minima, maxima, and roots.
β’ Supports single and multivariable problems with constraints.
---
Exercise
β’ Minimize the function f(x) = x^4 - 3x^3 + 2 over the range \[-2, 3].
β’ Find the root of f(x) = cos(x) - x near x=1.
---
#Python #SciPy #Optimization #RootFinding #ScientificComputing
https://t.iss.one/DataScienceM
β€3