PyTorch Masterclass: Part 5 β Reinforcement Learning with PyTorch
Duration: ~90 minutes
LINK: https://hackmd.io/@husseinsheikho/pytorch-5
https://t.iss.one/DataScienceMπΎ
Duration: ~90 minutes
LINK: https://hackmd.io/@husseinsheikho/pytorch-5
#PyTorch #ReinforcementLearning #RL #DeepRL #Qlearning #DQN #PPO #DDPG #MarkovDecisionProcesses #AI #MachineLearning #DeepLearning #ReinforcementLearning #PyTorchRL
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
β€1
π€π§ NVIDIA, MIT, HKU and Tsinghua University Introduce QeRL: A Powerful Quantum Leap in Reinforcement Learning for LLMs
ποΈ 17 Oct 2025
π AI News & Trends
The rise of large language models (LLMs) has redefined artificial intelligence powering everything from conversational AI to autonomous reasoning systems. However, training these models especially through reinforcement learning (RL) is computationally expensive requiring massive GPU resources and long training cycles. To address this, a team of researchers from NVIDIA, Massachusetts Institute of Technology (MIT), The ...
#QuantumLearning #ReinforcementLearning #LLMs #NVIDIA #MIT #TsinghuaUniversity
ποΈ 17 Oct 2025
π AI News & Trends
The rise of large language models (LLMs) has redefined artificial intelligence powering everything from conversational AI to autonomous reasoning systems. However, training these models especially through reinforcement learning (RL) is computationally expensive requiring massive GPU resources and long training cycles. To address this, a team of researchers from NVIDIA, Massachusetts Institute of Technology (MIT), The ...
#QuantumLearning #ReinforcementLearning #LLMs #NVIDIA #MIT #TsinghuaUniversity
π€π§ Agentic Entropy-Balanced Policy Optimization (AEPO): Balancing Exploration and Stability in Reinforcement Learning for Web Agents
ποΈ 17 Oct 2025
π AI News & Trends
AEPO (Agentic Entropy-Balanced Policy Optimization) represents a major advancement in the evolution of Agentic Reinforcement Learning (RL). As large language models (LLMs) increasingly act as autonomous web agents β searching, reasoning and interacting with tools β the need for balanced exploration and stability has become crucial. Traditional RL methods often rely heavily on entropy to ...
#AgenticRL #ReinforcementLearning #LLMs #WebAgents #EntropyBalanced #PolicyOptimization
ποΈ 17 Oct 2025
π AI News & Trends
AEPO (Agentic Entropy-Balanced Policy Optimization) represents a major advancement in the evolution of Agentic Reinforcement Learning (RL). As large language models (LLMs) increasingly act as autonomous web agents β searching, reasoning and interacting with tools β the need for balanced exploration and stability has become crucial. Traditional RL methods often rely heavily on entropy to ...
#AgenticRL #ReinforcementLearning #LLMs #WebAgents #EntropyBalanced #PolicyOptimization
π€π§ The Art of Scaling Reinforcement Learning Compute for LLMs: Top Insights from Meta, UT Austin and Harvard University
ποΈ 21 Oct 2025
π AI News & Trends
As Large Language Models (LLMs) continue to redefine artificial intelligence, a new research breakthrough has emerged from Meta, The University of Texas at Austin, University College London, UC Berkeley, Harvard University and Periodic Labs. Their paper, titled βThe Art of Scaling Reinforcement Learning Compute for LLMs,β introduces a transformative framework for understanding how reinforcement learning ...
#ReinforcementLearning #LLMs #AIResearch #Meta #UTAustin #HarvardUniversity
ποΈ 21 Oct 2025
π AI News & Trends
As Large Language Models (LLMs) continue to redefine artificial intelligence, a new research breakthrough has emerged from Meta, The University of Texas at Austin, University College London, UC Berkeley, Harvard University and Periodic Labs. Their paper, titled βThe Art of Scaling Reinforcement Learning Compute for LLMs,β introduces a transformative framework for understanding how reinforcement learning ...
#ReinforcementLearning #LLMs #AIResearch #Meta #UTAustin #HarvardUniversity
π€π§ The Art of Scaling Reinforcement Learning Compute for LLMs: Top Insights from Meta, UT Austin and Harvard University
ποΈ 21 Oct 2025
π AI News & Trends
As Large Language Models (LLMs) continue to redefine artificial intelligence, a new research breakthrough has emerged from Meta, The University of Texas at Austin, University College London, UC Berkeley, Harvard University and Periodic Labs. Their paper, titled βThe Art of Scaling Reinforcement Learning Compute for LLMs,β introduces a transformative framework for understanding how reinforcement learning ...
#ReinforcementLearning #LLMs #AIResearch #Meta #UTAustin #HarvardUniversity
ποΈ 21 Oct 2025
π AI News & Trends
As Large Language Models (LLMs) continue to redefine artificial intelligence, a new research breakthrough has emerged from Meta, The University of Texas at Austin, University College London, UC Berkeley, Harvard University and Periodic Labs. Their paper, titled βThe Art of Scaling Reinforcement Learning Compute for LLMs,β introduces a transformative framework for understanding how reinforcement learning ...
#ReinforcementLearning #LLMs #AIResearch #Meta #UTAustin #HarvardUniversity
π€π§ AgentFly: The Future of Reinforcement Learning for Intelligent Language Model Agents
ποΈ 22 Oct 2025
π AI News & Trends
AgentFly is a cutting-edge framework developed by researchers at the Mohamed bin Zayed University of Artificial Intelligence (MBZUAI) to revolutionize how large language models (LLMs) learn and act. It combines the power of reinforcement learning (RL) with language model agents enabling them to go beyond static prompt responses and learn through real-time feedback and experience. ...
#ReinforcementLearning #LLMs #LanguageModelAgents #ArtificialIntelligence #AgentFly #AIFramework
ποΈ 22 Oct 2025
π AI News & Trends
AgentFly is a cutting-edge framework developed by researchers at the Mohamed bin Zayed University of Artificial Intelligence (MBZUAI) to revolutionize how large language models (LLMs) learn and act. It combines the power of reinforcement learning (RL) with language model agents enabling them to go beyond static prompt responses and learn through real-time feedback and experience. ...
#ReinforcementLearning #LLMs #LanguageModelAgents #ArtificialIntelligence #AgentFly #AIFramework
π€π§ Reinforcement Learning for Large Language Models: A Complete Guide from Foundations to Frontiers Arun Shankar, AI Engineer at Google
ποΈ 27 Oct 2025
π AI News & Trends
Artificial Intelligence is evolving rapidly and at the center of this evolution is Reinforcement Learning (RL), the science of teaching machines to make better decisions through experience and feedback. In βReinforcement Learning for Large Language Models: A Complete Guide from Foundations to Frontiersβ, Arun Shankar, an Applied AI Engineer at Google presents one of the ...
#ReinforcementLearning #LargeLanguageModels #ArtificialIntelligence #MachineLearning #AIEngineer #Google
ποΈ 27 Oct 2025
π AI News & Trends
Artificial Intelligence is evolving rapidly and at the center of this evolution is Reinforcement Learning (RL), the science of teaching machines to make better decisions through experience and feedback. In βReinforcement Learning for Large Language Models: A Complete Guide from Foundations to Frontiersβ, Arun Shankar, an Applied AI Engineer at Google presents one of the ...
#ReinforcementLearning #LargeLanguageModels #ArtificialIntelligence #MachineLearning #AIEngineer #Google
β€4
π€π§ Agent Lightning By Microsoft: Reinforcement Learning Framework to Train Any AI Agent
ποΈ 28 Oct 2025
π Agentic AI
Artificial Intelligence (AI) is rapidly moving from static models to intelligent agents capable of reasoning, adapting, and performing complex, real-world tasks. However, training these agents effectively remains a major challenge. Most frameworks today tightly couple the agentβs logic with training processes making it hard to scale or transfer across use cases. Enter Agent Lightning, a ...
#AgentLightning #Microsoft #ReinforcementLearning #AIAgents #ArtificialIntelligence #MachineLearning
ποΈ 28 Oct 2025
π Agentic AI
Artificial Intelligence (AI) is rapidly moving from static models to intelligent agents capable of reasoning, adapting, and performing complex, real-world tasks. However, training these agents effectively remains a major challenge. Most frameworks today tightly couple the agentβs logic with training processes making it hard to scale or transfer across use cases. Enter Agent Lightning, a ...
#AgentLightning #Microsoft #ReinforcementLearning #AIAgents #ArtificialIntelligence #MachineLearning
β€1
π Train a Humanoid Robot with AI and Python
π Category: ROBOTICS
π Date: 2025-11-04 | β±οΈ Read time: 9 min read
Explore how to train a humanoid robot using Python and AI. This guide covers the application of 3D simulations and Reinforcement Learning, leveraging powerful tools like the MuJoCo physics engine and the Gym toolkit to create and manage sophisticated learning environments for robotics.
#AI #Robotics #Python #ReinforcementLearning #MachineLearning
π Category: ROBOTICS
π Date: 2025-11-04 | β±οΈ Read time: 9 min read
Explore how to train a humanoid robot using Python and AI. This guide covers the application of 3D simulations and Reinforcement Learning, leveraging powerful tools like the MuJoCo physics engine and the Gym toolkit to create and manage sophisticated learning environments for robotics.
#AI #Robotics #Python #ReinforcementLearning #MachineLearning
β€1
π The Reinforcement Learning Handbook: A Guide to Foundational Questions
π Category: REINFORCEMENT LEARNING
π Date: 2025-11-06 | β±οΈ Read time: 19 min read
Dive into the fundamentals of Reinforcement Learning with this comprehensive handbook. The guide focuses on answering foundational questions and simplifying complex concepts, offering a clear path for professionals and enthusiasts looking to master this critical field of AI. It is an essential resource for anyone aiming to build a strong, practical understanding of RL from the ground up.
#ReinforcementLearning #AI #MachineLearning #RL
π Category: REINFORCEMENT LEARNING
π Date: 2025-11-06 | β±οΈ Read time: 19 min read
Dive into the fundamentals of Reinforcement Learning with this comprehensive handbook. The guide focuses on answering foundational questions and simplifying complex concepts, offering a clear path for professionals and enthusiasts looking to master this critical field of AI. It is an essential resource for anyone aiming to build a strong, practical understanding of RL from the ground up.
#ReinforcementLearning #AI #MachineLearning #RL
π Robotics with Python: Q-Learning vs Actor-Critic vs Evolutionary Algorithms
π Category: Uncategorized
π Date: 2025-11-13 | β±οΈ Read time: 15 min read
Explore the intersection of Python and robotics in this deep dive into reinforcement learning algorithms. The article compares the trade-offs, strengths, and weaknesses of Q-Learning, Actor-Critic, and Evolutionary Algorithms for robotic control tasks. Learn how to apply these concepts by building a custom 3D environment to train and test your own RL-powered robot, providing a practical understanding of which technique to choose for your specific application.
#Python #Robotics #ReinforcementLearning #MachineLearning #AI
π Category: Uncategorized
π Date: 2025-11-13 | β±οΈ Read time: 15 min read
Explore the intersection of Python and robotics in this deep dive into reinforcement learning algorithms. The article compares the trade-offs, strengths, and weaknesses of Q-Learning, Actor-Critic, and Evolutionary Algorithms for robotic control tasks. Learn how to apply these concepts by building a custom 3D environment to train and test your own RL-powered robot, providing a practical understanding of which technique to choose for your specific application.
#Python #Robotics #ReinforcementLearning #MachineLearning #AI