Data Science Machine Learning Data Analysis
38.9K subscribers
3.69K photos
31 videos
39 files
1.28K links
ads: @HusseinSheikho

This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
Download Telegram
πŸ“š Deep learning with TensorFlow and Keras (2022)

πŸ”— Download Link: https://file.lu/d/1NkS

πŸ’¬ Tags: #TensorFlow #keras

⛔️ βž• interaction = βž• books

βœ… Click here πŸ‘‰: Surprise 🎁
πŸ‘2πŸ”₯1
πŸ“š Pro Deep Learning with TensorFlow 2.0 (2023)

πŸ”— Download Link: https://file.lu/d/1efG

πŸ’¬ Tags: #TensorFlow

⛔️ βž• interaction = βž• books

βœ… Click here πŸ‘‰: Surprise 🎁
❀3πŸ‘2
πŸ“š The TensorFlow Workshop (2022)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/208

πŸ’¬ Tags: #TensorFlow

USEFUL CHANNELS FOR YOU
πŸ‘6❀3😁1
πŸ“š TensorFlow in Action (2022)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/385

πŸ’¬ Tags: #TensorFlow

USEFUL CHANNELS FOR YOU
πŸ‘6πŸ”₯1
πŸ“š TensorFlow 2 Pocket Reference (2021)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/397

πŸ’¬ Tags: #TensorFlow

USEFUL CHANNELS FOR YOU
πŸ‘5❀2πŸ”₯1
πŸ“š TensorFlow Developer Certificate Guide (2023)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/679

πŸ’¬ Tags: #TensorFlow

USEFUL CHANNELS FOR YOU
πŸ‘31❀4πŸ”₯1
πŸ“š Mastering TensorFlow 2.x (2022)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/718

πŸ’¬ Tags: #TensorFlow

USEFUL CHANNELS FOR YOU
πŸ‘25❀4
πŸ“š Hands-On Image Generation with TensorFlow (2020)

1️⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2️⃣ Download Book: https://t.iss.one/c/1854405158/1346

πŸ’¬ Tags: #TensorFlow

😠 BEST DATA SCIENCE CHANNELS ON TELEGRAM πŸ˜‰
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘13
πŸ“š TensorFlow Developer Certification Guide (2024)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/1843

πŸ’¬ Tags: #TensorFlow

βœ… USEFUL CHANNELS FOR YOU ⭐️
πŸ“š Tensorflow Machine Learning (2020)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/1860

πŸ’¬ Tags: #Tensorflow

βœ… USEFUL CHANNELS FOR YOU ⭐️
❀1
πŸ“š TensorFlow Guide (2024)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/2130

πŸ’¬ Tags: #TensorFlow

βœ… USEFUL CHANNELS FOR YOU ⭐️
πŸ‘11❀1πŸ”₯1
πŸ”₯ Trending Repository: supervision

πŸ“ Description: We write your reusable computer vision tools. πŸ’œ

πŸ”— Repository URL: https://github.com/roboflow/supervision

🌐 Website: https://supervision.roboflow.com

πŸ“– Readme: https://github.com/roboflow/supervision#readme

πŸ“Š Statistics:
🌟 Stars: 34K stars
πŸ‘€ Watchers: 211
🍴 Forks: 2.7K forks

πŸ’» Programming Languages: Python

🏷️ Related Topics:
#python #tracking #machine_learning #computer_vision #deep_learning #metrics #tensorflow #image_processing #pytorch #video_processing #yolo #classification #coco #object_detection #hacktoberfest #pascal_voc #low_code #instance_segmentation #oriented_bounding_box


==================================
🧠 By: https://t.iss.one/DataScienceM
✨ Adversarial Learning with Keras and TensorFlow (Part 3): Exploring Adversarial Attacks Using Neural Structured Learning (NSL) ✨

πŸ“– Table of Contents Adversarial Learning with Keras and TensorFlow (Part 3): Exploring Adversarial Attacks Using Neural Structured Learning (NSL) Introduction to Advanced Adversarial Techniques in Machine Learning Harnessing NSL for Robust Model Training: Insights from Part 2 Deep Dive into…...

🏷️ #AdversarialLearning #DeepLearning #ImageProcessing #Keras #MachineLearning #NeuralNetworks #NeuralStructuredLearning #TensorFlow #Tutorial
✨ CycleGAN: Unpaired Image-to-Image Translation (Part 1) ✨

πŸ“– Table of Contents CycleGAN: Unpaired Image-to-Image Translation (Part 1) Introduction Unpaired Image Translation CycleGAN Pipeline and Training Loss Formulation Adversarial Loss Cycle Consistency Summary Citation Information CycleGAN: Unpaired Image-to-Image Translation (Part 1) In this tutorial, yo...

🏷️ #ComputerVision #CycleGAN #DeepLearning #Keras #KerasandTensorFlow #TensorFlow #UnpairedImageTranslation
πŸ’‘ Building a Simple Convolutional Neural Network (CNN)

Constructing a basic Convolutional Neural Network (CNN) is a fundamental step in deep learning for image processing. Using TensorFlow's Keras API, we can define a network with convolutional, pooling, and dense layers to classify images. This example sets up a simple CNN to recognize handwritten digits from the MNIST dataset.

import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
import numpy as np

# 1. Load and preprocess the MNIST dataset
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Reshape images for CNN: (batch_size, height, width, channels)
# MNIST images are 28x28 grayscale, so channels = 1
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255

# 2. Define the CNN architecture
model = models.Sequential()

# First Convolutional Block
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))

# Second Convolutional Block
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))

# Flatten the 3D output to 1D for the Dense layers
model.add(layers.Flatten())

# Dense (fully connected) layers
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax')) # Output layer for 10 classes (digits 0-9)

# 3. Compile the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

# Print a summary of the model layers
model.summary()

# 4. Train the model (uncomment to run training)
# print("\nTraining the model...")
# model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.1)

# 5. Evaluate the model (uncomment to run evaluation)
# print("\nEvaluating the model...")
# test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
# print(f"Test accuracy: {test_acc:.4f}")


Code explanation: This script defines a simple CNN using Keras. It loads and normalizes MNIST images. The Sequential model adds Conv2D layers for feature extraction, MaxPooling2D for downsampling, a Flatten layer to transition to 1D, and Dense layers for classification. The model is then compiled with an optimizer, loss function, and metrics, and a summary of its architecture is printed. Training and evaluation steps are included as commented-out examples.

#Python #DeepLearning #CNN #Keras #TensorFlow

━━━━━━━━━━━━━━━
By: @DataScienceM ✨