Machine Learning
39.2K subscribers
3.83K photos
32 videos
41 files
1.3K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
๐Ÿ”ฅ Trending Repository: vllm

๐Ÿ“ Description: A high-throughput and memory-efficient inference and serving engine for LLMs

๐Ÿ”— Repository URL: https://github.com/vllm-project/vllm

๐ŸŒ Website: https://docs.vllm.ai

๐Ÿ“– Readme: https://github.com/vllm-project/vllm#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 55.5K stars
๐Ÿ‘€ Watchers: 428
๐Ÿด Forks: 9.4K forks

๐Ÿ’ป Programming Languages: Python - Cuda - C++ - Shell - C - CMake

๐Ÿท๏ธ Related Topics:
#amd #cuda #inference #pytorch #transformer #llama #gpt #rocm #model_serving #tpu #hpu #mlops #xpu #llm #inferentia #llmops #llm_serving #qwen #deepseek #trainium


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
โค3
๐Ÿ“Œ How to Turn Your LLM Prototype into a Production-Ready System

๐Ÿ—‚ Category: LLM APPLICATIONS

๐Ÿ•’ Date: 2025-12-03 | โฑ๏ธ Read time: 15 min read

Transforming a promising LLM prototype into a production-ready system involves significant engineering challenges. This guide outlines the essential steps and best practices for moving beyond the experimental phase, focusing on building scalable, reliable, and efficient LLM applications for real-world deployment. Learn how to successfully operationalize your language model from concept to production.

#LLM #MLOps #ProductionAI #LLMOps
โค3