π Signal Processing and Machine Learning Theory (2023)
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/421
π¬ Tags: #SignalProcessing #ML
USEFUL CHANNELS FOR YOU
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/421
π¬ Tags: #SignalProcessing #ML
USEFUL CHANNELS FOR YOU
π6β€2π₯1
Forwarded from Python | Machine Learning | Coding | R
SciPy.pdf
206.4 KB
Unlock the full power of SciPy with my comprehensive cheat sheet!
Master essential functions for:
Function optimization and solving equations
Linear algebra operations
ODE integration and statistical analysis
Signal processing and spatial data manipulation
Data clustering and distance computation ...and much more!
π― BEST DATA SCIENCE CHANNELS ON TELEGRAM π
Master essential functions for:
Function optimization and solving equations
Linear algebra operations
ODE integration and statistical analysis
Signal processing and spatial data manipulation
Data clustering and distance computation ...and much more!
#Python #SciPy #MachineLearning #DataScience #CheatSheet #ArtificialIntelligence #Optimization #LinearAlgebra #SignalProcessing #BigData
Please open Telegram to view this post
VIEW IN TELEGRAM
π5
Topic: Python SciPy β From Easy to Top: Part 6 of 6: Signal Processing, Interpolation, and Fourier Transforms
---
1. Introduction
SciPy contains powerful tools for signal processing, interpolation, and Fourier transforms. These are essential in fields like image and audio processing, scientific simulations, and data smoothing.
Main submodules covered in this part:
β’
β’
β’
---
### 2. Signal Processing with `scipy.signal`
Filtering a Signal:
Letβs create a noisy sine wave and apply a low-pass filter.
---
Find Peaks in a Signal:
---
### 3. Fourier Transform with `scipy.fft`
The Fourier Transform breaks a signal into its frequency components.
---
### 4. Interpolation with `scipy.interpolate`
Interpolation estimates unknown values between known data points.
---
### 5. 2D Interpolation Example
---
### 6. Summary
β’
β’
β’
These tools are critical for real-time data analysis, image/audio processing, and engineering applications.
---
Exercise
β’ Generate a noisy signal and apply both low-pass and high-pass filters.
β’ Plot the Fourier transform of a composed signal of multiple frequencies.
β’ Perform cubic interpolation on a dataset with missing values and plot both.
---
#Python #SciPy #SignalProcessing #FFT #Interpolation #ScientificComputing
https://t.iss.one/DataScienceM
---
1. Introduction
SciPy contains powerful tools for signal processing, interpolation, and Fourier transforms. These are essential in fields like image and audio processing, scientific simulations, and data smoothing.
Main submodules covered in this part:
β’
scipy.signal β Signal processingβ’
scipy.fft β Fast Fourier Transformβ’
scipy.interpolate β Data interpolation and curve fitting---
### 2. Signal Processing with `scipy.signal`
Filtering a Signal:
Letβs create a noisy sine wave and apply a low-pass filter.
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
# Create a sample signal with noise
t = np.linspace(0, 1.0, 200)
x = np.sin(2 * np.pi * 5 * t) + 0.5 * np.random.randn(200)
# Apply a Butterworth low-pass filter
b, a = signal.butter(3, 0.2)
filtered = signal.filtfilt(b, a, x)
# Plot original and filtered signals
plt.plot(t, x, label="Noisy Signal")
plt.plot(t, filtered, label="Filtered Signal")
plt.legend()
plt.title("Low-pass Filtering with Butterworth")
plt.show()
---
Find Peaks in a Signal:
peaks, _ = signal.find_peaks(x, height=0)
print("Peak Indices:", peaks)
---
### 3. Fourier Transform with `scipy.fft`
The Fourier Transform breaks a signal into its frequency components.
from scipy.fft import fft, fftfreq
# Number of sample points
N = 600
# Sample spacing
T = 1.0 / 800.0
x = np.linspace(0.0, N*T, N, endpoint=False)
y = np.sin(50.0 * 2.0 * np.pi * x) + 0.5 * np.sin(80.0 * 2.0 * np.pi * x)
yf = fft(y)
xf = fftfreq(N, T)[:N//2]
plt.plot(xf, 2.0/N * np.abs(yf[0:N//2]))
plt.grid()
plt.title("Fourier Transform of Signal")
plt.show()
---
### 4. Interpolation with `scipy.interpolate`
Interpolation estimates unknown values between known data points.
from scipy import interpolate
x = np.linspace(0, 10, 10)
y = np.sin(x)
# Create interpolating function
f = interpolate.interp1d(x, y, kind='cubic')
# Interpolate new values
xnew = np.linspace(0, 10, 100)
ynew = f(xnew)
plt.plot(x, y, 'o', label="Data Points")
plt.plot(xnew, ynew, '-', label="Cubic Interpolation")
plt.legend()
plt.title("Interpolation Example")
plt.show()
---
### 5. 2D Interpolation Example
from scipy.interpolate import griddata
# Known points
points = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
values = np.array([0, 1, 1, 0])
# Interpolation grid
grid_x, grid_y = np.mgrid[0:1:100j, 0:1:100j]
grid_z = griddata(points, values, (grid_x, grid_y), method='cubic')
plt.imshow(grid_z.T, extent=(0,1,0,1), origin='lower')
plt.title("2D Cubic Interpolation")
plt.colorbar()
plt.show()
---
### 6. Summary
β’
scipy.signal is used for filtering, finding peaks, convolution, etc.β’
scipy.fft helps analyze signal frequencies.β’
scipy.interpolate estimates unknown values smoothly between data points.These tools are critical for real-time data analysis, image/audio processing, and engineering applications.
---
Exercise
β’ Generate a noisy signal and apply both low-pass and high-pass filters.
β’ Plot the Fourier transform of a composed signal of multiple frequencies.
β’ Perform cubic interpolation on a dataset with missing values and plot both.
---
#Python #SciPy #SignalProcessing #FFT #Interpolation #ScientificComputing
https://t.iss.one/DataScienceM
β€7
β’ Get raw audio data as a NumPy array.
β’ Create a Pydub segment from a NumPy array.
β’ Read a WAV file directly into a NumPy array.
β’ Write a NumPy array to a WAV file.
β’ Generate a sine wave.
VIII. Audio Analysis with Librosa
β’ Load audio with Librosa.
β’ Estimate tempo (Beats Per Minute).
β’ Get beat event times in seconds.
β’ Decompose into harmonic and percussive components.
β’ Compute a spectrogram.
β’ Compute Mel-Frequency Cepstral Coefficients (MFCCs).
β’ Compute Chroma features (related to musical pitch).
β’ Detect onset events (the start of notes).
β’ Pitch shifting.
β’ Time stretching (change speed without changing pitch).
IX. More Utilities
β’ Detect leading silence.
β’ Get the root mean square (RMS) energy.
β’ Get the maximum possible RMS for the audio format.
β’ Find the loudest section of an audio file.
β’ Change the frame rate (resample).
β’ Create a simple band-pass filter.
β’ Convert file format in one line.
β’ Get the raw bytes of the audio data.
β’ Get the maximum amplitude.
β’ Match the volume of two segments.
#Python #AudioProcessing #Pydub #Librosa #SignalProcessing
βββββββββββββββ
By: @DataScienceM β¨
import numpy as np
samples = np.array(audio.get_array_of_samples())
β’ Create a Pydub segment from a NumPy array.
new_audio = AudioSegment(
samples.tobytes(),
frame_rate=audio.frame_rate,
sample_width=audio.sample_width,
channels=audio.channels
)
β’ Read a WAV file directly into a NumPy array.
from scipy.io.wavfile import read
rate, data = read("sound.wav")
β’ Write a NumPy array to a WAV file.
from scipy.io.wavfile import write
write("new_sound.wav", rate, data)
β’ Generate a sine wave.
import numpy as np
sample_rate = 44100
frequency = 440 # A4 note
duration = 5
t = np.linspace(0., duration, int(sample_rate * duration))
amplitude = np.iinfo(np.int16).max * 0.5
data = amplitude * np.sin(2. * np.pi * frequency * t)
# This array can now be written to a file
VIII. Audio Analysis with Librosa
β’ Load audio with Librosa.
import librosa
y, sr = librosa.load("sound.mp3")
β’ Estimate tempo (Beats Per Minute).
tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
β’ Get beat event times in seconds.
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
β’ Decompose into harmonic and percussive components.
y_harmonic, y_percussive = librosa.effects.hpss(y)
β’ Compute a spectrogram.
import numpy as np
D = librosa.stft(y)
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
β’ Compute Mel-Frequency Cepstral Coefficients (MFCCs).
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
β’ Compute Chroma features (related to musical pitch).
chroma = librosa.feature.chroma_stft(y=y, sr=sr)
β’ Detect onset events (the start of notes).
onset_frames = librosa.onset.onset_detect(y=y, sr=sr)
onset_times = librosa.frames_to_time(onset_frames, sr=sr)
β’ Pitch shifting.
y_pitched = librosa.effects.pitch_shift(y, sr=sr, n_steps=4) # Shift up 4 semitones
β’ Time stretching (change speed without changing pitch).
y_fast = librosa.effects.time_stretch(y, rate=2.0) # Double speed
IX. More Utilities
β’ Detect leading silence.
from pydub.silence import detect_leading_silence
trim_ms = detect_leading_silence(audio)
trimmed_audio = audio[trim_ms:]
β’ Get the root mean square (RMS) energy.
rms = audio.rms
β’ Get the maximum possible RMS for the audio format.
max_possible_rms = audio.max_possible_amplitude
β’ Find the loudest section of an audio file.
from pydub.scipy_effects import normalize
loudest_part = normalize(audio.strip_silence(silence_len=1000, silence_thresh=-32))
β’ Change the frame rate (resample).
resampled = audio.set_frame_rate(16000)
β’ Create a simple band-pass filter.
from pydub.scipy_effects import band_pass_filter
filtered = band_pass_filter(audio, 400, 2000) # Pass between 400Hz and 2000Hz
β’ Convert file format in one line.
AudioSegment.from_file("music.ogg").export("music.mp3", format="mp3")β’ Get the raw bytes of the audio data.
raw_data = audio.raw_data
β’ Get the maximum amplitude.
max_amp = audio.max
β’ Match the volume of two segments.
matched_audio2 = audio2.apply_gain(audio1.dBFS - audio2.dBFS)
#Python #AudioProcessing #Pydub #Librosa #SignalProcessing
βββββββββββββββ
By: @DataScienceM β¨
β€2
segment = sine_wave[0:51]
windowed_segment = segment * window
VI. Convolution & Correlation
β’ Perform linear convolution.
sig1 = np.repeat([0., 1., 0.], 100)
sig2 = np.repeat([0., 1., 1., 0.], 100)
convolved = signal.convolve(sig1, sig2, mode='same')
β’ Compute cross-correlation.
# Useful for finding delays between signals
correlation = signal.correlate(sig1, sig2, mode='full')
β’ Compute auto-correlation.
# Useful for finding periodicities in a signal
autocorr = signal.correlate(sine_wave, sine_wave, mode='full')
VII. Time-Frequency Analysis
β’ Compute and plot a spectrogram.
f, t_spec, Sxx = signal.spectrogram(chirp_signal, fs)
plt.pcolormesh(t_spec, f, Sxx, shading='gouraud')
plt.show()
β’ Perform Continuous Wavelet Transform (CWT).
widths = np.arange(1, 31)
cwt_matrix = signal.cwt(chirp_signal, signal.ricker, widths)
β’ Perform Hilbert transform to get the analytic signal.
analytic_signal = signal.hilbert(sine_wave)
β’ Calculate instantaneous frequency.
instant_phase = np.unwrap(np.angle(analytic_signal))
instant_freq = (np.diff(instant_phase) / (2.0*np.pi) * fs)
VIII. Feature Extraction
β’ Find peaks in a signal.
peaks, _ = signal.find_peaks(sine_wave, height=0.5)
β’ Find peaks with prominence criteria.
peaks_prom, _ = signal.find_peaks(noisy_signal, prominence=1)
β’ Differentiate a signal (e.g., to find velocity from position).
derivative = np.diff(sine_wave)
β’ Integrate a signal.
from scipy.integrate import cumulative_trapezoid
integral = cumulative_trapezoid(sine_wave, t, initial=0)
β’ Detrend a signal to remove a linear trend.
trend = np.linspace(0, 1, fs)
trended_signal = sine_wave + trend
detrended = signal.detrend(trended_signal)
IX. System Analysis
β’ Define a system via a transfer function (numerator, denominator).
# Example: 2nd order low-pass filter
system = signal.TransferFunction([1], [1, 1, 1])
β’ Compute the step response of a system.
t_step, y_step = signal.step(system)
β’ Compute the impulse response of a system.
t_impulse, y_impulse = signal.impulse(system)
β’ Compute the Bode plot of a system's frequency response.
w, mag, phase = signal.bode(system)
X. Signal Generation from Data
β’ Generate a signal from a function.
t = np.linspace(0, 1, 500)
custom_signal = np.sinc(2 * np.pi * 4 * t)
β’ Convert a list of values to a signal array.
my_data = [0, 1, 2, 3, 2, 1, 0, -1, -2, -1, 0]
data_signal = np.array(my_data)
β’ Read signal data from a WAV file.
from scipy.io import wavfile
samplerate, data = wavfile.read('audio.wav')
β’ Create a pulse train signal.
pulse_train = np.zeros(fs)
pulse_train[::100] = 1 # Impulse every 100 samples
#Python #SignalProcessing #SciPy #NumPy #DSP
βββββββββββββββ
By: @DataScienceM β¨