Python tip:
Use
Python tip:
Use
Python tip:
Use
Python tip:
Use
Python tip:
Create a new array with an inserted axis using
Python tip:
Use
Python tip:
Use
Python tip:
Use
Python tip:
Use
#NumPyTips #PythonNumericalComputing #ArrayManipulation #DataScience #MachineLearning #PythonTips #NumPyForBeginners #Vectorization #LinearAlgebra #StatisticalAnalysis
━━━━━━━━━━━━━━━
By: @DataScienceM ✨
Use
np.polyval() to evaluate a polynomial at specific values.import numpy as np
poly_coeffs = np.array([3, 0, 1]) # Represents 3x^2 + 0x + 1
x_values = np.array([0, 1, 2])
y_values = np.polyval(poly_coeffs, x_values)
print(y_values) # Output: [ 1 4 13] (3*0^2+1, 3*1^2+1, 3*2^2+1)
Python tip:
Use
np.polyfit() to find the coefficients of a polynomial that best fits a set of data points.import numpy as np
x = np.array([0, 1, 2, 3])
y = np.array([0, 0.8, 0.9, 0.1])
coefficients = np.polyfit(x, y, 2) # Fit a 2nd degree polynomial
print(coefficients)
Python tip:
Use
np.clip() to limit values in an array to a specified range, as an instance method.import numpy as np
arr = np.array([1, 10, 3, 15, 6])
clipped_arr = arr.clip(min=3, max=10)
print(clipped_arr)
Python tip:
Use
np.squeeze() to remove single-dimensional entries from the shape of an array.import numpy as np
arr = np.zeros((1, 3, 1, 4))
squeezed_arr = np.squeeze(arr) # Removes axes of length 1
print(squeezed_arr.shape) # Output: (3, 4)
Python tip:
Create a new array with an inserted axis using
np.expand_dims().import numpy as np
arr = np.array([1, 2, 3]) # Shape (3,)
expanded_arr = np.expand_dims(arr, axis=0) # Add a new axis at position 0
print(expanded_arr.shape) # Output: (1, 3)
Python tip:
Use
np.ptp() (peak-to-peak) to find the range (max - min) of an array.import numpy as np
arr = np.array([1, 5, 2, 8, 3])
peak_to_peak = np.ptp(arr)
print(peak_to_peak) # Output: 7 (8 - 1)
Python tip:
Use
np.prod() to calculate the product of array elements.import numpy as np
arr = np.array([1, 2, 3, 4])
product = np.prod(arr)
print(product) # Output: 24 (1 * 2 * 3 * 4)
Python tip:
Use
np.allclose() to compare two arrays for equality within a tolerance.import numpy as np
a = np.array([1.0, 2.0])
b = np.array([1.00000000001, 2.0])
print(np.allclose(a, b)) # Output: True
Python tip:
Use
np.array_split() to split an array into N approximately equal sub-arrays.import numpy as np
arr = np.arange(7)
split_arr = np.array_split(arr, 3) # Split into 3 parts
print(split_arr)
#NumPyTips #PythonNumericalComputing #ArrayManipulation #DataScience #MachineLearning #PythonTips #NumPyForBeginners #Vectorization #LinearAlgebra #StatisticalAnalysis
━━━━━━━━━━━━━━━
By: @DataScienceM ✨