Data Science Machine Learning Data Analysis
38.3K subscribers
3.4K photos
30 videos
39 files
1.26K links
This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning

Cross promotion and ads: @hussein_sheikho
Download Telegram
Data Science Machine Learning Data Analysis
Photo
# 📚 PyTorch Tutorial for Beginners - Part 5/6: Generative Models & Advanced Topics
#PyTorch #DeepLearning #GANs #VAEs #ReinforcementLearning #Deployment

Welcome to Part 5 of our PyTorch series! This comprehensive lesson explores generative modeling, reinforcement learning, model optimization, and deployment strategies with practical implementations.

---

## 🔹 Generative Adversarial Networks (GANs)
### 1. GAN Core Concepts
![GAN Architecture](https://miro.medium.com/max/1400/1*5q0q0jQ6Z5Z5Z5Z5Z5Z5Z5A.png)

Key Components:
- Generator: Creates fake samples from noise (typically a transposed CNN)
- Discriminator: Distinguishes real vs. fake samples (CNN classifier)
- Adversarial Training: The two networks compete in a minimax game

### 2. DCGAN Implementation
class Generator(nn.Module):
def __init__(self, latent_dim, img_channels, features_g):
super().__init__()
self.net = nn.Sequential(
# Input: N x latent_dim x 1 x 1
nn.ConvTranspose2d(latent_dim, features_g*8, 4, 1, 0, bias=False),
nn.BatchNorm2d(features_g*8),
nn.ReLU(),
# 4x4
nn.ConvTranspose2d(features_g*8, features_g*4, 4, 2, 1, bias=False),
nn.BatchNorm2d(features_g*4),
nn.ReLU(),
# 8x8
nn.ConvTranspose2d(features_g*4, features_g*2, 4, 2, 1, bias=False),
nn.BatchNorm2d(features_g*2),
nn.ReLU(),
# 16x16
nn.ConvTranspose2d(features_g*2, img_channels, 4, 2, 1, bias=False),
nn.Tanh()
# 32x32
)

def forward(self, x):
return self.net(x)

class Discriminator(nn.Module):
def __init__(self, img_channels, features_d):
super().__init__()
self.net = nn.Sequential(
# Input: N x img_channels x 32 x 32
nn.Conv2d(img_channels, features_d, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2),
# 16x16
nn.Conv2d(features_d, features_d*2, 4, 2, 1, bias=False),
nn.BatchNorm2d(features_d*2),
nn.LeakyReLU(0.2),
# 8x8
nn.Conv2d(features_d*2, features_d*4, 4, 2, 1, bias=False),
nn.BatchNorm2d(features_d*4),
nn.LeakyReLU(0.2),
# 4x4
nn.Conv2d(features_d*4, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)

def forward(self, x):
return self.net(x)

# Initialize
gen = Generator(latent_dim=100, img_channels=3, features_g=64).to(device)
disc = Discriminator(img_channels=3, features_d=64).to(device)

# Loss and optimizers
criterion = nn.BCELoss()
opt_gen = optim.Adam(gen.parameters(), lr=0.0002, betas=(0.5, 0.999))
opt_disc = optim.Adam(disc.parameters(), lr=0.0002, betas=(0.5, 0.999))


### 3. GAN Training Loop
def train_gan(gen, disc, loader, num_epochs):
fixed_noise = torch.randn(32, 100, 1, 1).to(device)

for epoch in range(num_epochs):
for batch_idx, (real, _) in enumerate(loader):
real = real.to(device)
noise = torch.randn(real.size(0), 100, 1, 1).to(device)
fake = gen(noise)

# Train Discriminator
disc_real = disc(real).view(-1)
loss_disc_real = criterion(disc_real, torch.ones_like(disc_real))
disc_fake = disc(fake.detach()).view(-1)
loss_disc_fake = criterion(disc_fake, torch.zeros_like(disc_fake))
loss_disc = (loss_disc_real + loss_disc_fake) / 2
disc.zero_grad()
loss_disc.backward()
opt_disc.step()

# Train Generator
output = disc(fake).view(-1)
loss_gen = criterion(output, torch.ones_like(output))
gen.zero_grad()
loss_gen.backward()
opt_gen.step()

# Visualization
with torch.no_grad():
fake = gen(fixed_noise)
save_image(fake, f"gan_samples/epoch_{epoch}.png", normalize=True)
1
Data Science Machine Learning Data Analysis
Photo
### 2. Pruning
parameters_to_prune = (
(model.conv1, 'weight'),
(model.fc1, 'weight'),
)

prune.global_unstructured(
parameters_to_prune,
pruning_method=prune.L1Unstructured,
amount=0.2
)

# Remove pruning reparameterization
for module, param in parameters_to_prune:
prune.remove(module, param)


### 3. ONNX Export
dummy_input = torch.randn(1, 3, 224, 224)
torch.onnx.export(
model,
dummy_input,
"model.onnx",
input_names=["input"],
output_names=["output"],
dynamic_axes={
"input": {0: "batch_size"},
"output": {0: "batch_size"}
}
)


### 4. TorchScript
# Tracing
example_input = torch.rand(1, 3, 224, 224)
traced_script = torch.jit.trace(model, example_input)
traced_script.save("traced_model.pt")

# Scripting
scripted_model = torch.jit.script(model)
scripted_model.save("scripted_model.pt")


---

## 🔹 PyTorch Lightning Best Practices
### 1. LightningModule Structure
import pytorch_lightning as pl

class LitModel(pl.LightningModule):
def __init__(self, learning_rate=1e-3):
super().__init__()
self.save_hyperparameters()
self.model = nn.Sequential(
nn.Linear(28*28, 128),
nn.ReLU(),
nn.Linear(128, 10)
)

def forward(self, x):
return self.model(x)

def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = nn.functional.cross_entropy(y_hat, y)
self.log('train_loss', loss)
return loss

def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = nn.functional.cross_entropy(y_hat, y)
self.log('val_loss', loss)

def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=self.hparams.learning_rate)

# Training
trainer = pl.Trainer(gpus=1, max_epochs=10)
model = LitModel()
trainer.fit(model, train_loader, val_loader)


### 2. Advanced Lightning Features
# Mixed Precision
trainer = pl.Trainer(precision=16)

# Distributed Training
trainer = pl.Trainer(gpus=2, accelerator='ddp')

# Callbacks
early_stop = pl.callbacks.EarlyStopping(monitor='val_loss')
checkpoint = pl.callbacks.ModelCheckpoint(monitor='val_loss')
trainer = pl.Trainer(callbacks=[early_stop, checkpoint])

# Logging
trainer = pl.Trainer(logger=pl.loggers.TensorBoardLogger('logs/'))


---

## 🔹 Best Practices Summary
1. For GANs: Use spectral norm, progressive growing, and TTUR
2. For VAEs: Monitor both reconstruction and KL divergence terms
3. For RL: Properly normalize rewards and use experience replay
4. For Deployment: Quantize, prune, and export to optimized formats
5. For Maintenance: Use PyTorch Lightning for reproducible experiments

---

### 📌 What's Next?
In Part 6 (Final), we'll cover:
➡️ Advanced Architectures (Graph NNs, Neural ODEs)
➡️ Model Interpretation Techniques
➡️ Production Deployment (TorchServe, Flask API)
➡️ PyTorch Ecosystem (TorchVision, TorchText, TorchAudio)

#PyTorch #DeepLearning #GANs #ReinforcementLearning 🚀

Practice Exercises:
1. Implement WGAN-GP with gradient penalty
2. Train a VAE on MNIST and visualize latent space
3. Build a DQN agent for CartPole environment
4. Quantize a pretrained ResNet and compare accuracy/speed
5. Convert a model to TorchScript and serve with Flask

# WGAN-GP Gradient Penalty
def compute_gradient_penalty(D, real_samples, fake_samples):
alpha = torch.rand(real_samples.size(0), 1, 1, 1).to(device)
interpolates = (alpha * real_samples + (1 - alpha) * fake_samples).requires_grad_(True)
d_interpolates = D(interpolates)
gradients = torch.autograd.grad(
outputs=d_interpolates,
inputs=interpolates,
grad_outputs=torch.ones_like(d_interpolates),
create_graph=True,
retain_graph=True,
only_inputs=True
)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
🤖🧠 NVIDIA, MIT, HKU and Tsinghua University Introduce QeRL: A Powerful Quantum Leap in Reinforcement Learning for LLMs

🗓️ 17 Oct 2025
📚 AI News & Trends

The rise of large language models (LLMs) has redefined artificial intelligence powering everything from conversational AI to autonomous reasoning systems. However, training these models especially through reinforcement learning (RL) is computationally expensive requiring massive GPU resources and long training cycles. To address this, a team of researchers from NVIDIA, Massachusetts Institute of Technology (MIT), The ...

#QuantumLearning #ReinforcementLearning #LLMs #NVIDIA #MIT #TsinghuaUniversity
🤖🧠 Agentic Entropy-Balanced Policy Optimization (AEPO): Balancing Exploration and Stability in Reinforcement Learning for Web Agents

🗓️ 17 Oct 2025
📚 AI News & Trends

AEPO (Agentic Entropy-Balanced Policy Optimization) represents a major advancement in the evolution of Agentic Reinforcement Learning (RL). As large language models (LLMs) increasingly act as autonomous web agents – searching, reasoning and interacting with tools – the need for balanced exploration and stability has become crucial. Traditional RL methods often rely heavily on entropy to ...

#AgenticRL #ReinforcementLearning #LLMs #WebAgents #EntropyBalanced #PolicyOptimization