Machine Learning
Photo
# Learning rate scheduler for transformers
def lr_schedule(step, d_model=512, warmup_steps=4000):
arg1 = step ** -0.5
arg2 = step * (warmup_steps ** -1.5)
return (d_model ** -0.5) * min(step ** -0.5, step * warmup_steps ** -1.5)
---
### **π What's Next?
In **Part 5, we'll cover:
β‘οΈ Generative Models (GANs, VAEs)
β‘οΈ Reinforcement Learning with PyTorch
β‘οΈ Model Optimization & Deployment
β‘οΈ PyTorch Lightning Best Practices
#PyTorch #DeepLearning #NLP #Transformers π
Practice Exercises:
1. Implement a character-level language model with LSTM
2. Add attention visualization to a sentiment analysis model
3. Build a transformer from scratch for machine translation
4. Compare teacher forcing ratios in seq2seq training
5. Implement beam search for decoder inference
# Character-level LSTM starter
class CharLSTM(nn.Module):
def __init__(self, vocab_size, hidden_size, n_layers):
super().__init__()
self.embed = nn.Embedding(vocab_size, hidden_size)
self.lstm = nn.LSTM(hidden_size, hidden_size, n_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, vocab_size)
def forward(self, x, hidden=None):
x = self.embed(x)
out, hidden = self.lstm(x, hidden)
return self.fc(out), hidden
π₯2β€1
π Vision Transformer (ViT) Tutorial β Part 1: From CNNs to Transformers β The Revolution in Computer Vision
Let's start: https://hackmd.io/@husseinsheikho/vit-1
Let's start: https://hackmd.io/@husseinsheikho/vit-1
#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #NeuralNetworks #ImageClassification #AttentionIsAllYouNeed
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
π± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
β€3π1
π Vision Transformer (ViT) Tutorial β Part 2: Implementing ViT from Scratch in PyTorch
Let's start: https://hackmd.io/@husseinsheikho/vit-2
Let's start: https://hackmd.io/@husseinsheikho/vit-2
#VisionTransformer #ViTFromScratch #PyTorch #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #CodingTutorial #AttentionIsAllYouNeed
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
π± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
β€2
π Vision Transformer (ViT) Tutorial β Part 3: Pretraining, Transfer Learning & Real-World Applications
Let's start: https://hackmd.io/@husseinsheikho/vit-3
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
Let's start: https://hackmd.io/@husseinsheikho/vit-3
#VisionTransformer #TransferLearning #HuggingFace #ImageNet #FineTuning #AI #DeepLearning #ComputerVision #Transformers #ModelZoo
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
β€3
π Vision Transformer (ViT) Tutorial β Part 5: Efficient Vision Transformers β MobileViT, TinyViT & Edge Deployment
Read lesson: https://hackmd.io/@husseinsheikho/vit-5
#MobileViT #TinyViT #EfficientViT #EdgeAI #ModelOptimization #ONNX #TensorRT #TorchServe #DeepLearning #ComputerVision #Transformers
Read lesson: https://hackmd.io/@husseinsheikho/vit-5
#MobileViT #TinyViT #EfficientViT #EdgeAI #ModelOptimization #ONNX #TensorRT #TorchServe #DeepLearning #ComputerVision #Transformers
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€2
π Vision Transformer (ViT) Tutorial β Part 6: Vision Transformers in Production β MLOps, Monitoring & CI/CD
Learn more: https://hackmd.io/@husseinsheikho/vit-6
#MLOps #ModelMonitoring #CIforML #MLflow #WandB #Kubeflow #ProductionAI #DeepLearning #ComputerVision #Transformers #AIOps
Learn more: https://hackmd.io/@husseinsheikho/vit-6
#MLOps #ModelMonitoring #CIforML #MLflow #WandB #Kubeflow #ProductionAI #DeepLearning #ComputerVision #Transformers #AIOps
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€1
π Vision Transformer (ViT) Tutorial β Part 7: The Future of Vision Transformers β Multimodal, 3D, and Beyond
Learn: https://hackmd.io/@husseinsheikho/vit-7
#FutureOfViT #MultimodalAI #3DViT #TimeSformer #PaLME #MedicalAI #EmbodiedAI #RetNet #Mamba #NextGenAI #DeepLearning #ComputerVision #Transformers
Learn: https://hackmd.io/@husseinsheikho/vit-7
#FutureOfViT #MultimodalAI #3DViT #TimeSformer #PaLME #MedicalAI #EmbodiedAI #RetNet #Mamba #NextGenAI #DeepLearning #ComputerVision #Transformers
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€2
π₯ Master Vision Transformers with 65+ MCQs! π₯
Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?
π§ Dive into 65+ curated Multiple Choice Questions covering the fundamentals, architecture, training, and applications of ViT β all with answers!
π Explore Now: https://hackmd.io/@husseinsheikho/vit-mcq
πΉ Table of Contents
Basic Concepts (Q1βQ15)
Architecture & Components (Q16βQ30)
Attention & Transformers (Q31βQ45)
Training & Optimization (Q46βQ55)
Advanced & Real-World Applications (Q56βQ65)
Answer Key & Explanations
Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?
π§ Dive into 65+ curated Multiple Choice Questions covering the fundamentals, architecture, training, and applications of ViT β all with answers!
π Explore Now: https://hackmd.io/@husseinsheikho/vit-mcq
πΉ Table of Contents
Basic Concepts (Q1βQ15)
Architecture & Components (Q16βQ30)
Attention & Transformers (Q31βQ45)
Training & Optimization (Q46βQ55)
Advanced & Real-World Applications (Q56βQ65)
Answer Key & Explanations
#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #MCQ #InterviewPrep
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
π± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
β€6
PyTorch Masterclass: Part 3 β Deep Learning for Natural Language Processing with PyTorch
Duration: ~120 minutes
Link A: https://hackmd.io/@husseinsheikho/pytorch-3a
Link B: https://hackmd.io/@husseinsheikho/pytorch-3b
https://t.iss.one/DataScienceMβ οΈ
Duration: ~120 minutes
Link A: https://hackmd.io/@husseinsheikho/pytorch-3a
Link B: https://hackmd.io/@husseinsheikho/pytorch-3b
#PyTorch #NLP #RNN #LSTM #GRU #Transformers #Attention #NaturalLanguageProcessing #TextClassification #SentimentAnalysis #WordEmbeddings #DeepLearning #MachineLearning #AI #SequenceModeling #BERT #GPT #TextProcessing #PyTorchNLP
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
β€2
β¨ AI for Healthcare: Fine-Tuning Googleβs PaliGemma 2 for Brain Tumor Detection β¨
π Table of Contents AI for Healthcare: Fine-Tuning Googleβs PaliGemma 2 for Brain Tumor Detection Configuring Your Development Environment Setup and Imports Load the Brain Tumor Dataset Format Dataset to PaliGemma Format Display Train Image and Label COCO Format BBox toβ¦...
π·οΈ #FineTuning #ObjectDetection #PaliGemma2 #PEFT #QLoRA #Transformers #Tutorial #VisionLanguageModels
π Table of Contents AI for Healthcare: Fine-Tuning Googleβs PaliGemma 2 for Brain Tumor Detection Configuring Your Development Environment Setup and Imports Load the Brain Tumor Dataset Format Dataset to PaliGemma Format Display Train Image and Label COCO Format BBox toβ¦...
π·οΈ #FineTuning #ObjectDetection #PaliGemma2 #PEFT #QLoRA #Transformers #Tutorial #VisionLanguageModels
β¨ Image Processing with Gemini Pro β¨
π Table of Contents Image Processing with Gemini Pro Getting Started with Gemini Pro: An Overview Gemini Pro Setup Integrating Google AI Python SDK with Gemini Pro Image Processing with Gemini Pro: Python Code Generation Comprehensive List of GenAI Models Compatibleβ¦...
π·οΈ #ArtificialIntelligence #ChatGPT #DeepLearning #Gemini #GeminiPro #GenAI #GenerativeAI #GoogleCloud #ImageProcessing #Python #Transformers #Tutorial #VertexAI
π Table of Contents Image Processing with Gemini Pro Getting Started with Gemini Pro: An Overview Gemini Pro Setup Integrating Google AI Python SDK with Gemini Pro Image Processing with Gemini Pro: Python Code Generation Comprehensive List of GenAI Models Compatibleβ¦...
π·οΈ #ArtificialIntelligence #ChatGPT #DeepLearning #Gemini #GeminiPro #GenAI #GenerativeAI #GoogleCloud #ImageProcessing #Python #Transformers #Tutorial #VertexAI
β€2
π₯ Trending Repository: generative-ai-for-beginners
π Description: 21 Lessons, Get Started Building with Generative AI
π Repository URL: https://github.com/microsoft/generative-ai-for-beginners
π Readme: https://github.com/microsoft/generative-ai-for-beginners#readme
π Statistics:
π Stars: 95.7K stars
π Watchers: 827
π΄ Forks: 50.1K forks
π» Programming Languages: Jupyter Notebook - Python - JavaScript - TypeScript - Shell - PowerShell
π·οΈ Related Topics:
==================================
π§ By: https://t.iss.one/DataScienceM
π Description: 21 Lessons, Get Started Building with Generative AI
π Repository URL: https://github.com/microsoft/generative-ai-for-beginners
π Readme: https://github.com/microsoft/generative-ai-for-beginners#readme
π Statistics:
π Stars: 95.7K stars
π Watchers: 827
π΄ Forks: 50.1K forks
π» Programming Languages: Jupyter Notebook - Python - JavaScript - TypeScript - Shell - PowerShell
π·οΈ Related Topics:
#ai #azure #transformers #openai #gpt #language_model #semantic_search #dall_e #prompt_engineering #llms #generative_ai #generativeai #chatgpt #microsoft_for_beginners
==================================
π§ By: https://t.iss.one/DataScienceM
π₯ Trending Repository: transformerlab-app
π Description: Open Source Application for Advanced LLM + Diffusion Engineering: interact, train, fine-tune, and evaluate large language models on your own computer.
π Repository URL: https://github.com/transformerlab/transformerlab-app
π Website: https://transformerlab.ai/
π Readme: https://github.com/transformerlab/transformerlab-app#readme
π Statistics:
π Stars: 3.9K stars
π Watchers: 31
π΄ Forks: 363 forks
π» Programming Languages: TypeScript - JavaScript
π·οΈ Related Topics:
==================================
π§ By: https://t.iss.one/DataScienceM
π Description: Open Source Application for Advanced LLM + Diffusion Engineering: interact, train, fine-tune, and evaluate large language models on your own computer.
π Repository URL: https://github.com/transformerlab/transformerlab-app
π Website: https://transformerlab.ai/
π Readme: https://github.com/transformerlab/transformerlab-app#readme
π Statistics:
π Stars: 3.9K stars
π Watchers: 31
π΄ Forks: 363 forks
π» Programming Languages: TypeScript - JavaScript
π·οΈ Related Topics:
#electron #transformers #llama #lora #diffusion #mlx #diffusion_models #llms #stability_diffusion #rlhf
==================================
π§ By: https://t.iss.one/DataScienceM
π How Relevance Models Foreshadowed Transformers for NLP
π Category: MACHINE LEARNING
π Date: 2025-11-20 | β±οΈ Read time: 19 min read
The revolutionary attention mechanism at the heart of modern transformers and LLMs has a surprising history. This article traces its lineage back to "relevance models" from the field of information retrieval. It explores how these earlier models, designed to weigh the importance of terms, laid the conceptual groundwork for the attention mechanism that powers today's most advanced NLP. This historical perspective highlights how today's breakthroughs are built upon foundational concepts, reminding us that innovation often stands on the shoulders of giants.
#NLP #Transformers #LLM #AttentionMechanism #AIHistory
π Category: MACHINE LEARNING
π Date: 2025-11-20 | β±οΈ Read time: 19 min read
The revolutionary attention mechanism at the heart of modern transformers and LLMs has a surprising history. This article traces its lineage back to "relevance models" from the field of information retrieval. It explores how these earlier models, designed to weigh the importance of terms, laid the conceptual groundwork for the attention mechanism that powers today's most advanced NLP. This historical perspective highlights how today's breakthroughs are built upon foundational concepts, reminding us that innovation often stands on the shoulders of giants.
#NLP #Transformers #LLM #AttentionMechanism #AIHistory
β€1π€©1