Machine Learning
39.2K subscribers
3.82K photos
32 videos
41 files
1.3K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
Machine Learning
Photo
# Learning rate scheduler for transformers
def lr_schedule(step, d_model=512, warmup_steps=4000):
arg1 = step ** -0.5
arg2 = step * (warmup_steps ** -1.5)
return (d_model ** -0.5) * min(step ** -0.5, step * warmup_steps ** -1.5)


---

### **πŸ“Œ What's Next?
In **Part 5
, we'll cover:
➑️ Generative Models (GANs, VAEs)
➑️ Reinforcement Learning with PyTorch
➑️ Model Optimization & Deployment
➑️ PyTorch Lightning Best Practices

#PyTorch #DeepLearning #NLP #Transformers πŸš€

Practice Exercises:
1. Implement a character-level language model with LSTM
2. Add attention visualization to a sentiment analysis model
3. Build a transformer from scratch for machine translation
4. Compare teacher forcing ratios in seq2seq training
5. Implement beam search for decoder inference

# Character-level LSTM starter
class CharLSTM(nn.Module):
def __init__(self, vocab_size, hidden_size, n_layers):
super().__init__()
self.embed = nn.Embedding(vocab_size, hidden_size)
self.lstm = nn.LSTM(hidden_size, hidden_size, n_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, vocab_size)

def forward(self, x, hidden=None):
x = self.embed(x)
out, hidden = self.lstm(x, hidden)
return self.fc(out), hidden
πŸ”₯2❀1
🌟 Vision Transformer (ViT) Tutorial – Part 1: From CNNs to Transformers – The Revolution in Computer Vision

Let's start: https://hackmd.io/@husseinsheikho/vit-1

#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #NeuralNetworks #ImageClassification #AttentionIsAllYouNeed

βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
❀3πŸ‘1
🌟 Vision Transformer (ViT) Tutorial – Part 2: Implementing ViT from Scratch in PyTorch

Let's start: https://hackmd.io/@husseinsheikho/vit-2

#VisionTransformer #ViTFromScratch #PyTorch #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #CodingTutorial #AttentionIsAllYouNeed


βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
❀2
🌟 Vision Transformer (ViT) Tutorial – Part 3: Pretraining, Transfer Learning & Real-World Applications

Let's start: https://hackmd.io/@husseinsheikho/vit-3

#VisionTransformer #TransferLearning #HuggingFace #ImageNet #FineTuning #AI #DeepLearning #ComputerVision #Transformers #ModelZoo


βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
❀3
🌟 Vision Transformer (ViT) Tutorial – Part 5: Efficient Vision Transformers – MobileViT, TinyViT & Edge Deployment

Read lesson: https://hackmd.io/@husseinsheikho/vit-5

#MobileViT #TinyViT #EfficientViT #EdgeAI #ModelOptimization #ONNX #TensorRT #TorchServe #DeepLearning #ComputerVision #Transformers

βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❀2
🌟 Vision Transformer (ViT) Tutorial – Part 6: Vision Transformers in Production – MLOps, Monitoring & CI/CD

Learn more: https://hackmd.io/@husseinsheikho/vit-6

#MLOps #ModelMonitoring #CIforML #MLflow #WandB #Kubeflow #ProductionAI #DeepLearning #ComputerVision #Transformers #AIOps

βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❀1
🌟 Vision Transformer (ViT) Tutorial – Part 7: The Future of Vision Transformers – Multimodal, 3D, and Beyond

Learn: https://hackmd.io/@husseinsheikho/vit-7

#FutureOfViT #MultimodalAI #3DViT #TimeSformer #PaLME #MedicalAI #EmbodiedAI #RetNet #Mamba #NextGenAI #DeepLearning #ComputerVision #Transformers

βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❀2
πŸ”₯ Master Vision Transformers with 65+ MCQs! πŸ”₯

Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?

🧠 Dive into 65+ curated Multiple Choice Questions covering the fundamentals, architecture, training, and applications of ViT β€” all with answers!

🌐 Explore Now: https://hackmd.io/@husseinsheikho/vit-mcq

πŸ”Ή Table of Contents
Basic Concepts (Q1–Q15)
Architecture & Components (Q16–Q30)
Attention & Transformers (Q31–Q45)
Training & Optimization (Q46–Q55)
Advanced & Real-World Applications (Q56–Q65)
Answer Key & Explanations

#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #MCQ #InterviewPrep


βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
❀6
✨ AI for Healthcare: Fine-Tuning Google’s PaliGemma 2 for Brain Tumor Detection ✨

πŸ“– Table of Contents AI for Healthcare: Fine-Tuning Google’s PaliGemma 2 for Brain Tumor Detection Configuring Your Development Environment Setup and Imports Load the Brain Tumor Dataset Format Dataset to PaliGemma Format Display Train Image and Label COCO Format BBox to…...

🏷️ #FineTuning #ObjectDetection #PaliGemma2 #PEFT #QLoRA #Transformers #Tutorial #VisionLanguageModels
✨ Image Processing with Gemini Pro ✨

πŸ“– Table of Contents Image Processing with Gemini Pro Getting Started with Gemini Pro: An Overview Gemini Pro Setup Integrating Google AI Python SDK with Gemini Pro Image Processing with Gemini Pro: Python Code Generation Comprehensive List of GenAI Models Compatible…...

🏷️ #ArtificialIntelligence #ChatGPT #DeepLearning #Gemini #GeminiPro #GenAI #GenerativeAI #GoogleCloud #ImageProcessing #Python #Transformers #Tutorial #VertexAI
❀2
πŸ”₯ Trending Repository: generative-ai-for-beginners

πŸ“ Description: 21 Lessons, Get Started Building with Generative AI

πŸ”— Repository URL: https://github.com/microsoft/generative-ai-for-beginners

πŸ“– Readme: https://github.com/microsoft/generative-ai-for-beginners#readme

πŸ“Š Statistics:
🌟 Stars: 95.7K stars
πŸ‘€ Watchers: 827
🍴 Forks: 50.1K forks

πŸ’» Programming Languages: Jupyter Notebook - Python - JavaScript - TypeScript - Shell - PowerShell

🏷️ Related Topics:
#ai #azure #transformers #openai #gpt #language_model #semantic_search #dall_e #prompt_engineering #llms #generative_ai #generativeai #chatgpt #microsoft_for_beginners


==================================
🧠 By: https://t.iss.one/DataScienceM
πŸ”₯ Trending Repository: transformerlab-app

πŸ“ Description: Open Source Application for Advanced LLM + Diffusion Engineering: interact, train, fine-tune, and evaluate large language models on your own computer.

πŸ”— Repository URL: https://github.com/transformerlab/transformerlab-app

🌐 Website: https://transformerlab.ai/

πŸ“– Readme: https://github.com/transformerlab/transformerlab-app#readme

πŸ“Š Statistics:
🌟 Stars: 3.9K stars
πŸ‘€ Watchers: 31
🍴 Forks: 363 forks

πŸ’» Programming Languages: TypeScript - JavaScript

🏷️ Related Topics:
#electron #transformers #llama #lora #diffusion #mlx #diffusion_models #llms #stability_diffusion #rlhf


==================================
🧠 By: https://t.iss.one/DataScienceM
πŸ“Œ How Relevance Models Foreshadowed Transformers for NLP

πŸ—‚ Category: MACHINE LEARNING

πŸ•’ Date: 2025-11-20 | ⏱️ Read time: 19 min read

The revolutionary attention mechanism at the heart of modern transformers and LLMs has a surprising history. This article traces its lineage back to "relevance models" from the field of information retrieval. It explores how these earlier models, designed to weigh the importance of terms, laid the conceptual groundwork for the attention mechanism that powers today's most advanced NLP. This historical perspective highlights how today's breakthroughs are built upon foundational concepts, reminding us that innovation often stands on the shoulders of giants.

#NLP #Transformers #LLM #AttentionMechanism #AIHistory
❀1🀩1