π Data Cleaning and Exploration with Machine Learning (2022)
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/119
π¬ Tags: #DataCleaning #ML
USEFUL CHANNELS FOR YOU
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/119
π¬ Tags: #DataCleaning #ML
USEFUL CHANNELS FOR YOU
β€7π3
π Python Data Cleaning Cookbook (2023)
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/866
π¬ Tags: #DataCleaning
π BEST DATA SCIENCE CHANNELS ON TELEGRAM π
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/866
π¬ Tags: #DataCleaning
π BEST DATA SCIENCE CHANNELS ON TELEGRAM π
π12β€1
Topic: Handling Datasets of All Types β Part 2 of 5: Data Cleaning and Preprocessing
---
1. Importance of Data Cleaning
β’ Real-world data is often noisy, incomplete, or inconsistent.
β’ Cleaning improves data quality and model performance.
---
2. Handling Missing Data
β’ Detect missing values using
β’ Strategies to handle missing data:
* Remove rows or columns with missing values:
* Impute missing values with mean, median, or mode:
---
3. Handling Outliers
β’ Outliers can skew analysis and model results.
β’ Detect outliers using:
* Boxplots
* Z-score method
* IQR (Interquartile Range)
β’ Handle by removal or transformation.
---
4. Data Normalization and Scaling
β’ Many ML models require features to be on a similar scale.
β’ Common techniques:
* Min-Max Scaling (scales values between 0 and 1)
* Standardization (mean = 0, std = 1)
---
5. Encoding Categorical Variables
β’ Convert categorical data into numerical:
* Label Encoding: Assigns an integer to each category.
* One-Hot Encoding: Creates binary columns for each category.
---
6. Summary
β’ Data cleaning is essential for reliable modeling.
β’ Handling missing values, outliers, scaling, and encoding are key preprocessing steps.
---
Exercise
β’ Load a dataset, identify missing values, and apply mean imputation.
β’ Detect outliers using IQR and remove them.
β’ Normalize numeric features using standardization.
---
#DataCleaning #DataPreprocessing #MachineLearning #Python #DataScience
https://t.iss.one/DataScienceM
---
1. Importance of Data Cleaning
β’ Real-world data is often noisy, incomplete, or inconsistent.
β’ Cleaning improves data quality and model performance.
---
2. Handling Missing Data
β’ Detect missing values using
isnull() or isna() in pandas.β’ Strategies to handle missing data:
* Remove rows or columns with missing values:
df.dropna(inplace=True)
* Impute missing values with mean, median, or mode:
df['column'].fillna(df['column'].mean(), inplace=True)
---
3. Handling Outliers
β’ Outliers can skew analysis and model results.
β’ Detect outliers using:
* Boxplots
* Z-score method
* IQR (Interquartile Range)
β’ Handle by removal or transformation.
---
4. Data Normalization and Scaling
β’ Many ML models require features to be on a similar scale.
β’ Common techniques:
* Min-Max Scaling (scales values between 0 and 1)
* Standardization (mean = 0, std = 1)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df_scaled = scaler.fit_transform(df[['feature1', 'feature2']])
---
5. Encoding Categorical Variables
β’ Convert categorical data into numerical:
* Label Encoding: Assigns an integer to each category.
* One-Hot Encoding: Creates binary columns for each category.
pd.get_dummies(df['category_column'])
---
6. Summary
β’ Data cleaning is essential for reliable modeling.
β’ Handling missing values, outliers, scaling, and encoding are key preprocessing steps.
---
Exercise
β’ Load a dataset, identify missing values, and apply mean imputation.
β’ Detect outliers using IQR and remove them.
β’ Normalize numeric features using standardization.
---
#DataCleaning #DataPreprocessing #MachineLearning #Python #DataScience
https://t.iss.one/DataScienceM
β€6π1
Topic: Handling Datasets of All Types β Part 2 of 5: Data Cleaning and Preprocessing
---
1. Importance of Data Cleaning
β’ Real-world data is often noisy, incomplete, or inconsistent.
β’ Cleaning improves data quality and model performance.
---
2. Handling Missing Data
β’ Detect missing values using
β’ Strategies to handle missing data:
* Remove rows or columns with missing values:
* Impute missing values with mean, median, or mode:
---
3. Handling Outliers
β’ Outliers can skew analysis and model results.
β’ Detect outliers using:
* Boxplots
* Z-score method
* IQR (Interquartile Range)
β’ Handle by removal or transformation.
---
4. Data Normalization and Scaling
β’ Many ML models require features to be on a similar scale.
β’ Common techniques:
* Min-Max Scaling (scales values between 0 and 1)
* Standardization (mean = 0, std = 1)
---
5. Encoding Categorical Variables
β’ Convert categorical data into numerical:
* Label Encoding: Assigns an integer to each category.
* One-Hot Encoding: Creates binary columns for each category.
---
6. Summary
β’ Data cleaning is essential for reliable modeling.
β’ Handling missing values, outliers, scaling, and encoding are key preprocessing steps.
---
Exercise
β’ Load a dataset, identify missing values, and apply mean imputation.
β’ Detect outliers using IQR and remove them.
β’ Normalize numeric features using standardization.
---
#DataCleaning #DataPreprocessing #MachineLearning #Python #DataScience
https://t.iss.one/DataScience4M
---
1. Importance of Data Cleaning
β’ Real-world data is often noisy, incomplete, or inconsistent.
β’ Cleaning improves data quality and model performance.
---
2. Handling Missing Data
β’ Detect missing values using
isnull() or isna() in pandas.β’ Strategies to handle missing data:
* Remove rows or columns with missing values:
df.dropna(inplace=True)
* Impute missing values with mean, median, or mode:
df['column'].fillna(df['column'].mean(), inplace=True)
---
3. Handling Outliers
β’ Outliers can skew analysis and model results.
β’ Detect outliers using:
* Boxplots
* Z-score method
* IQR (Interquartile Range)
β’ Handle by removal or transformation.
---
4. Data Normalization and Scaling
β’ Many ML models require features to be on a similar scale.
β’ Common techniques:
* Min-Max Scaling (scales values between 0 and 1)
* Standardization (mean = 0, std = 1)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df_scaled = scaler.fit_transform(df[['feature1', 'feature2']])
---
5. Encoding Categorical Variables
β’ Convert categorical data into numerical:
* Label Encoding: Assigns an integer to each category.
* One-Hot Encoding: Creates binary columns for each category.
pd.get_dummies(df['category_column'])
---
6. Summary
β’ Data cleaning is essential for reliable modeling.
β’ Handling missing values, outliers, scaling, and encoding are key preprocessing steps.
---
Exercise
β’ Load a dataset, identify missing values, and apply mean imputation.
β’ Detect outliers using IQR and remove them.
β’ Normalize numeric features using standardization.
---
#DataCleaning #DataPreprocessing #MachineLearning #Python #DataScience
https://t.iss.one/DataScience4M
β€4π1
Python Commands for Data Cleaning
#Python #DataCleaning #DataAnalytics #DataScientists #MachineLearning #ArtificialIntelligence #DataAnalysis
https://t.iss.one/DataScienceMβ
#Python #DataCleaning #DataAnalytics #DataScientists #MachineLearning #ArtificialIntelligence #DataAnalysis
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
β€2
Age
count 5.000000
mean 30.000000
std 6.363961
min 22.000000
25% 26.000000
50% 29.000000
75% 35.000000
max 38.000000
---
10.
df.columnsReturns the column labels of the DataFrame.
import pandas as pd
df = pd.DataFrame({'Name': [], 'Age': [], 'City': []})
print(df.columns)
Index(['Name', 'Age', 'City'], dtype='object')
---
11.
df.dtypesReturns the data type of each column.
import pandas as pd
df = pd.DataFrame({'Name': ['Alice'], 'Age': [25], 'Salary': [75000.50]})
print(df.dtypes)
Name object
Age int64
Salary float64
dtype: object
---
12. Selecting a Column
Select a single column, which returns a Pandas Series.
import pandas as pd
data = {'Name': ['Alice', 'Bob'], 'Age': [25, 30]}
df = pd.DataFrame(data)
ages = df['Age']
print(ages)
0 25
1 30
Name: Age, dtype: int64
#DataSelection #Indexing #Statistics
---
13.
df.loc[]Access a group of rows and columns by label(s) or a boolean array.
import pandas as pd
data = {'Age': [25, 30, 35], 'City': ['NY', 'LA', 'CH']}
df = pd.DataFrame(data, index=['Alice', 'Bob', 'Charlie'])
print(df.loc['Bob'])
Age 30
City LA
Name: Bob, dtype: object
---
14.
df.iloc[]Access a group of rows and columns by integer position(s).
import pandas as pd
data = {'Age': [25, 30, 35], 'City': ['NY', 'LA', 'CH']}
df = pd.DataFrame(data, index=['Alice', 'Bob', 'Charlie'])
print(df.iloc[1]) # Get the second row (index 1)
Age 30
City LA
Name: Bob, dtype: object
---
15.
df.isnull()Returns a DataFrame of the same shape with boolean values indicating if a value is missing (NaN).
import pandas as pd
import numpy as np
df = pd.DataFrame({'A': [1, np.nan], 'B': [3, 4]})
print(df.isnull())
A B
0 False False
1 True False
---
16.
df.dropna()Removes missing values.
import pandas as pd
import numpy as np
df = pd.DataFrame({'A': [1, np.nan, 3], 'B': [4, 5, 6]})
cleaned_df = df.dropna()
print(cleaned_df)
A B
0 1.0 4
2 3.0 6
#DataCleaning #MissingData
---
17.
df.fillna()Fills missing (NaN) values with a specified value or method.
import pandas as pd
import numpy as np
df = pd.DataFrame({'Score': [90, 85, np.nan, 92]})
filled_df = df.fillna(0)
print(filled_df)
Score
0 90.0
1 85.0
2 0.0
3 92.0
---
18.
df.drop_duplicates()Removes duplicate rows from the DataFrame.
import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Alice'], 'Age': [25, 30, 25]}
df = pd.DataFrame(data)
unique_df = df.drop_duplicates()
print(unique_df)
Name Age
0 Alice 25
1 Bob 30
---
19.
df.rename()Alters axes labels (e.g., column names).
import pandas as pd
df = pd.DataFrame({'A': [1], 'B': [2]})
renamed_df = df.rename(columns={'A': 'Column_A', 'B': 'Column_B'})
print(renamed_df)
Column_A Column_B
0 1 2
---
20.
series.value_counts()Returns a Series containing counts of unique values.
π I Cleaned a Messy CSV File Using Pandasβ. βHereβs the Exact Process I Follow Every Time.
π Category: DATA SCIENCE
π Date: 2025-11-26 | β±οΈ Read time: 17 min read
Stop guessing when cleaning messy CSV files. This article details a repeatable 5-step workflow using Python's Pandas library to systematically diagnose and fix data quality issues. Learn a structured, practical process to transform your data preparation, moving from haphazard fixes to a reliable methodology for any data professional.
#Python #Pandas #DataCleaning #DataScience
π Category: DATA SCIENCE
π Date: 2025-11-26 | β±οΈ Read time: 17 min read
Stop guessing when cleaning messy CSV files. This article details a repeatable 5-step workflow using Python's Pandas library to systematically diagnose and fix data quality issues. Learn a structured, practical process to transform your data preparation, moving from haphazard fixes to a reliable methodology for any data professional.
#Python #Pandas #DataCleaning #DataScience
β€3