Machine Learning
39.1K subscribers
3.82K photos
32 videos
41 files
1.3K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
#Pandas #DataAnalysis #Python #DataScience #Tutorial

Top 30 Pandas Functions & Methods

This lesson covers 30 essential Pandas functions for data manipulation and analysis, each with a standalone example and its output.

---

1. pd.DataFrame()
Creates a new DataFrame (a 2D labeled data structure) from various inputs like dictionaries or lists.

import pandas as pd
data = {'col1': [1, 2], 'col2': [3, 4]}
df = pd.DataFrame(data)
print(df)

col1  col2
0 1 3
1 2 4


---

2. pd.Series()
Creates a new Series (a 1D labeled array).

import pandas as pd
s = pd.Series([10, 20, 30, 40], name='MyNumbers')
print(s)

0    10
1 20
2 30
3 40
Name: MyNumbers, dtype: int64


---

3. pd.read_csv()
Reads data from a CSV file into a DataFrame. (Assuming a file data.csv exists).

# Create a dummy csv file first
with open('data.csv', 'w') as f:
f.write('Name,Age\nAlice,25\nBob,30')

df = pd.read_csv('data.csv')
print(df)

Name  Age
0 Alice 25
1 Bob 30


---

4. df.to_csv()
Writes a DataFrame to a CSV file.

import pandas as pd
df = pd.DataFrame({'Name': ['Charlie'], 'Age': [35]})
# index=False prevents writing the DataFrame index to the file
df.to_csv('output.csv', index=False)
# You can check that 'output.csv' has been created.
print("File 'output.csv' created.")

File 'output.csv' created.

#PandasIO #DataFrame #Series

---

5. df.head()
Returns the first n rows of the DataFrame (default is 5).

import pandas as pd
data = {'Name': ['A', 'B', 'C', 'D', 'E', 'F'], 'Value': [1, 2, 3, 4, 5, 6]}
df = pd.DataFrame(data)
print(df.head(3))

Name  Value
0 A 1
1 B 2
2 C 3


---

6. df.tail()
Returns the last n rows of the DataFrame (default is 5).

import pandas as pd
data = {'Name': ['A', 'B', 'C', 'D', 'E', 'F'], 'Value': [1, 2, 3, 4, 5, 6]}
df = pd.DataFrame(data)
print(df.tail(2))

Name  Value
4 E 5
5 F 6


---

7. df.info()
Provides a concise summary of the DataFrame, including data types and non-null values.

import pandas as pd
import numpy as np
data = {'col1': [1, 2, 3], 'col2': [4.0, 5.0, np.nan], 'col3': ['A', 'B', 'C']}
df = pd.DataFrame(data)
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 col1 3 non-null int64
1 col2 2 non-null float64
2 col3 3 non-null object
dtypes: float64(1), int64(1), object(1)
memory usage: 200.0+ bytes


---

8. df.shape
Returns a tuple representing the dimensionality (rows, columns) of the DataFrame.

import pandas as pd
df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]})
print(df.shape)

(2, 3)

#DataInspection #PandasBasics

---

9. df.describe()
Generates descriptive statistics for numerical columns (count, mean, std, min, max, etc.).

import pandas as pd
df = pd.DataFrame({'Age': [22, 38, 26, 35, 29]})
print(df.describe())
3