Machine Learning
39.2K subscribers
3.83K photos
32 videos
41 files
1.3K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
segment = sine_wave[0:51]
windowed_segment = segment * window


VI. Convolution & Correlation

• Perform linear convolution.
sig1 = np.repeat([0., 1., 0.], 100)
sig2 = np.repeat([0., 1., 1., 0.], 100)
convolved = signal.convolve(sig1, sig2, mode='same')

• Compute cross-correlation.
# Useful for finding delays between signals
correlation = signal.correlate(sig1, sig2, mode='full')

• Compute auto-correlation.
# Useful for finding periodicities in a signal
autocorr = signal.correlate(sine_wave, sine_wave, mode='full')


VII. Time-Frequency Analysis

• Compute and plot a spectrogram.
f, t_spec, Sxx = signal.spectrogram(chirp_signal, fs)
plt.pcolormesh(t_spec, f, Sxx, shading='gouraud')
plt.show()

• Perform Continuous Wavelet Transform (CWT).
widths = np.arange(1, 31)
cwt_matrix = signal.cwt(chirp_signal, signal.ricker, widths)

• Perform Hilbert transform to get the analytic signal.
analytic_signal = signal.hilbert(sine_wave)

• Calculate instantaneous frequency.
instant_phase = np.unwrap(np.angle(analytic_signal))
instant_freq = (np.diff(instant_phase) / (2.0*np.pi) * fs)


VIII. Feature Extraction

• Find peaks in a signal.
peaks, _ = signal.find_peaks(sine_wave, height=0.5)

• Find peaks with prominence criteria.
peaks_prom, _ = signal.find_peaks(noisy_signal, prominence=1)

• Differentiate a signal (e.g., to find velocity from position).
derivative = np.diff(sine_wave)

• Integrate a signal.
from scipy.integrate import cumulative_trapezoid
integral = cumulative_trapezoid(sine_wave, t, initial=0)

• Detrend a signal to remove a linear trend.
trend = np.linspace(0, 1, fs)
trended_signal = sine_wave + trend
detrended = signal.detrend(trended_signal)


IX. System Analysis

• Define a system via a transfer function (numerator, denominator).
# Example: 2nd order low-pass filter
system = signal.TransferFunction([1], [1, 1, 1])

• Compute the step response of a system.
t_step, y_step = signal.step(system)

• Compute the impulse response of a system.
t_impulse, y_impulse = signal.impulse(system)

• Compute the Bode plot of a system's frequency response.
w, mag, phase = signal.bode(system)


X. Signal Generation from Data

• Generate a signal from a function.
t = np.linspace(0, 1, 500)
custom_signal = np.sinc(2 * np.pi * 4 * t)

• Convert a list of values to a signal array.
my_data = [0, 1, 2, 3, 2, 1, 0, -1, -2, -1, 0]
data_signal = np.array(my_data)

• Read signal data from a WAV file.
from scipy.io import wavfile
samplerate, data = wavfile.read('audio.wav')

• Create a pulse train signal.
pulse_train = np.zeros(fs)
pulse_train[::100] = 1 # Impulse every 100 samples


#Python #SignalProcessing #SciPy #NumPy #DSP

━━━━━━━━━━━━━━━
By: @DataScienceM