Data Science Machine Learning Data Analysis
38.9K subscribers
3.71K photos
31 videos
39 files
1.28K links
ads: @HusseinSheikho

This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
Download Telegram
🌟 Vision Transformer (ViT) Tutorial – Part 3: Pretraining, Transfer Learning & Real-World Applications

Let's start: https://hackmd.io/@husseinsheikho/vit-3

#VisionTransformer #TransferLearning #HuggingFace #ImageNet #FineTuning #AI #DeepLearning #ComputerVision #Transformers #ModelZoo


βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
❀3
🌟 Vision Transformer (ViT) Tutorial – Part 4: Beyond Classification – DETR, Segmentation & Video Transformers

Let's start learn: https://hackmd.io/@husseinsheikho/vit-4

#VisionTransformer #DETR #Segmenter #VideoTransformer #MAE #SelfSupervised #Multimodal #AI #DeepLearning #ComputerVision

βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❀2
🌟 Vision Transformer (ViT) Tutorial – Part 5: Efficient Vision Transformers – MobileViT, TinyViT & Edge Deployment

Read lesson: https://hackmd.io/@husseinsheikho/vit-5

#MobileViT #TinyViT #EfficientViT #EdgeAI #ModelOptimization #ONNX #TensorRT #TorchServe #DeepLearning #ComputerVision #Transformers

βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❀2
🌟 Vision Transformer (ViT) Tutorial – Part 6: Vision Transformers in Production – MLOps, Monitoring & CI/CD

Learn more: https://hackmd.io/@husseinsheikho/vit-6

#MLOps #ModelMonitoring #CIforML #MLflow #WandB #Kubeflow #ProductionAI #DeepLearning #ComputerVision #Transformers #AIOps

βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❀1
🌟 Vision Transformer (ViT) Tutorial – Part 7: The Future of Vision Transformers – Multimodal, 3D, and Beyond

Learn: https://hackmd.io/@husseinsheikho/vit-7

#FutureOfViT #MultimodalAI #3DViT #TimeSformer #PaLME #MedicalAI #EmbodiedAI #RetNet #Mamba #NextGenAI #DeepLearning #ComputerVision #Transformers

βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❀2
πŸ”₯ Master Vision Transformers with 65+ MCQs! πŸ”₯

Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?

🧠 Dive into 65+ curated Multiple Choice Questions covering the fundamentals, architecture, training, and applications of ViT β€” all with answers!

🌐 Explore Now: https://hackmd.io/@husseinsheikho/vit-mcq

πŸ”Ή Table of Contents
Basic Concepts (Q1–Q15)
Architecture & Components (Q16–Q30)
Attention & Transformers (Q31–Q45)
Training & Optimization (Q46–Q55)
Advanced & Real-World Applications (Q56–Q65)
Answer Key & Explanations

#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #MCQ #InterviewPrep


βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
❀6
✨ Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset ✨

πŸ“– Table of Contents Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset Introduction Dataset and Task Overview About the Dataset What Are We Detecting? Defining Pothole Severity Can the Pothole Severity Logic Be Improved? Configuring Your Development Environment Training…...

🏷️ #ComputerVision #DeepLearning #ObjectDetection #Tutorial #YOLO
πŸ‘1
✨ Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset ✨

πŸ“– Table of Contents Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset Introduction Dataset and Task Overview About the Dataset What Are We Detecting? Defining Pothole Severity Can the Pothole Severity Logic Be Improved? Configuring Your Development Environment Training…...

🏷️ #ComputerVision #DeepLearning #ObjectDetection #Tutorial #YOLO
✨ Sharpen Your Vision: Super-Resolution of CCTV Images Using Hugging Face Diffusers ✨

πŸ“– Table of Contents Sharpen Your Vision: Super-Resolution of CCTV Images Using Hugging Face Diffusers Configuring Your Development Environment Problem Statement How Does Super-Resolution Solve This? State-of-the-Art Approaches Generative Adversarial Networks (GANs) Diffusion Models Implementing Diffus...

🏷️ #ArtificialIntelligence #ComputerVision #DeepLearning #ImageProcessing #MachineLearning #Tutorial
✨ Unlocking Image Clarity: A Comprehensive Guide to Super-Resolution Techniques ✨

πŸ“– Table of Contents Unlocking Image Clarity: A Comprehensive Guide to Super-Resolution Techniques Introduction Configuring Your Development Environment Need Help Configuring Your Development Environment? What Is Super-Resolution? Usual Problems with Low-Resolution Imagery Traditional Computer Vision A...

🏷️ #ArtificialIntelligence #ComputerVision #DeepLearning #ImageProcessing #MachineLearning #TechnologyApplications #Tutorial
✨ CycleGAN: Unpaired Image-to-Image Translation (Part 1) ✨

πŸ“– Table of Contents CycleGAN: Unpaired Image-to-Image Translation (Part 1) Introduction Unpaired Image Translation CycleGAN Pipeline and Training Loss Formulation Adversarial Loss Cycle Consistency Summary Citation Information CycleGAN: Unpaired Image-to-Image Translation (Part 1) In this tutorial, yo...

🏷️ #ComputerVision #CycleGAN #DeepLearning #Keras #KerasandTensorFlow #TensorFlow #UnpairedImageTranslation
✨ Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset ✨

πŸ“– Table of Contents Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset Introduction Dataset and Task Overview About the Dataset What Are We Detecting? Defining Pothole Severity Can the Pothole Severity Logic Be Improved? Configuring Your Development Environment Training…...

🏷️ #ComputerVision #DeepLearning #ObjectDetection #Tutorial #YOLO
✨ People Tracker with YOLOv12 and Centroid Tracker ✨

πŸ“– Table of Contents People Tracker with YOLOv12 and Centroid Tracker Introduction Why People Tracker Monitoring Matters How YOLOv12 Enables Real-Time Applications Configuring Your Development Environment Downloading the Input Video Install gdown Download the Video Visualizing the Inference and Trackin...

🏷️ #ComputerVision #ObjectDetection #PeopleTracker #Tutorial #YOLOv12
✨ Meet BLIP: The Vision-Language Model Powering Image Captioning ✨

πŸ“– Table of Contents Meet BLIP: The Vision-Language Model Powering Image Captioning What Is Image Captioning and Why Is It Challenging? Why It’s Challenging Why Traditional Vision Tasks Aren’t Enough Configuring Your Development Environment A Brief History of Image Captioning Models…...

🏷️ #ComputerVision #DeepLearning #ImageCaptioning #MultimodalAI #Tutorial
❀1
πŸ€–πŸ§  Thinking with Camera 2.0: A Powerful Multimodal Model for Camera-Centric Understanding and Generation

πŸ—“οΈ 14 Oct 2025
πŸ“š AI News & Trends

In the rapidly evolving field of multimodal AI, bridging gaps between vision, language and geometry is one of the frontier challenges. Traditional vision-language models excel at describing what is in an image β€œa cat on a sofa” β€œa red car on the road” but struggle to reason about how the image was captured: the camera’s ...

#MultimodalAI #CameraCentricUnderstanding #VisionLanguageModels #AIResearch #ComputerVision #GenerativeModels
# Real-World Case Study: E-commerce Product Pipeline
import boto3
from PIL import Image
import io

def process_product_image(s3_bucket, s3_key):
# 1. Download from S3
s3 = boto3.client('s3')
response = s3.get_object(Bucket=s3_bucket, Key=s3_key)
img = Image.open(io.BytesIO(response['Body'].read()))

# 2. Standardize dimensions
img = img.convert("RGB")
img = img.resize((1200, 1200), Image.LANCZOS)

# 3. Remove background (simplified)
# In practice: use rembg or AWS Rekognition
img = remove_background(img)

# 4. Generate variants
variants = {
"web": img.resize((800, 800)),
"mobile": img.resize((400, 400)),
"thumbnail": img.resize((100, 100))
}

# 5. Upload to CDN
for name, variant in variants.items():
buffer = io.BytesIO()
variant.save(buffer, "JPEG", quality=95)
s3.upload_fileobj(
buffer,
"cdn-bucket",
f"products/{s3_key.split('/')[-1].split('.')[0]}_{name}.jpg",
ExtraArgs={'ContentType': 'image/jpeg', 'CacheControl': 'max-age=31536000'}
)

# 6. Generate WebP version
webp_buffer = io.BytesIO()
img.save(webp_buffer, "WEBP", quality=85)
s3.upload_fileobj(webp_buffer, "cdn-bucket", f"products/{s3_key.split('/')[-1].split('.')[0]}.webp")

process_product_image("user-uploads", "products/summer_dress.jpg")


By: @DataScienceM πŸ‘

#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
❀1