Forwarded from Python | Machine Learning | Coding | R
Free Certification Courses to Learn Data Analytics in 2025:
1. Python
๐ https://imp.i384100.net/5gmXXo
2. SQL
๐ https://edx.org/learn/relational-databases/stanford-university-databases-relational-databases-and-sql
3. Statistics and R
๐ https://edx.org/learn/r-programming/harvard-university-statistics-and-r
4. Data Science: R Basics
๐https://edx.org/learn/r-programming/harvard-university-data-science-r-basics
5. Excel and PowerBI
๐ https://learn.microsoft.com/en-gb/training/paths/modern-analytics/
6. Data Science: Visualization
๐https://edx.org/learn/data-visualization/harvard-university-data-science-visualization
7. Data Science: Machine Learning
๐https://edx.org/learn/machine-learning/harvard-university-data-science-machine-learning
8. R
๐https://imp.i384100.net/rQqomy
9. Tableau
๐https://imp.i384100.net/MmW9b3
10. PowerBI
๐ https://lnkd.in/dpmnthEA
11. Data Science: Productivity Tools
๐ https://lnkd.in/dGhPYg6N
12. Data Science: Probability
๐https://mygreatlearning.com/academy/learn-for-free/courses/probability-for-data-science
13. Mathematics
๐https://matlabacademy.mathworks.com
14. Statistics
๐ https://lnkd.in/df6qksMB
15. Data Visualization
๐https://imp.i384100.net/k0X6vx
16. Machine Learning
๐ https://imp.i384100.net/nLbkN9
17. Deep Learning
๐ https://imp.i384100.net/R5aPOR
18. Data Science: Linear Regression
๐https://pll.harvard.edu/course/data-science-linear-regression/2023-10
19. Data Science: Wrangling
๐https://edx.org/learn/data-science/harvard-university-data-science-wrangling
20. Linear Algebra
๐ https://pll.harvard.edu/course/data-analysis-life-sciences-2-introduction-linear-models-and-matrix-algebra
21. Probability
๐ https://pll.harvard.edu/course/data-science-probability
22. Introduction to Linear Models and Matrix Algebra
๐https://edx.org/learn/linear-algebra/harvard-university-introduction-to-linear-models-and-matrix-algebra
23. Data Science: Capstone
๐ https://edx.org/learn/data-science/harvard-university-data-science-capstone
24. Data Analysis
๐ https://pll.harvard.edu/course/data-analysis-life-sciences-4-high-dimensional-data-analysis
25. IBM Data Science Professional Certificate
https://imp.i384100.net/9gxbbY
26. Neural Networks and Deep Learning
https://imp.i384100.net/DKrLn2
27. Supervised Machine Learning: Regression and Classification
https://imp.i384100.net/g1KJEA
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #IBMDataScience #FreeCourses #Certification #LearnDataScience
1. Python
๐ https://imp.i384100.net/5gmXXo
2. SQL
๐ https://edx.org/learn/relational-databases/stanford-university-databases-relational-databases-and-sql
3. Statistics and R
๐ https://edx.org/learn/r-programming/harvard-university-statistics-and-r
4. Data Science: R Basics
๐https://edx.org/learn/r-programming/harvard-university-data-science-r-basics
5. Excel and PowerBI
๐ https://learn.microsoft.com/en-gb/training/paths/modern-analytics/
6. Data Science: Visualization
๐https://edx.org/learn/data-visualization/harvard-university-data-science-visualization
7. Data Science: Machine Learning
๐https://edx.org/learn/machine-learning/harvard-university-data-science-machine-learning
8. R
๐https://imp.i384100.net/rQqomy
9. Tableau
๐https://imp.i384100.net/MmW9b3
10. PowerBI
๐ https://lnkd.in/dpmnthEA
11. Data Science: Productivity Tools
๐ https://lnkd.in/dGhPYg6N
12. Data Science: Probability
๐https://mygreatlearning.com/academy/learn-for-free/courses/probability-for-data-science
13. Mathematics
๐https://matlabacademy.mathworks.com
14. Statistics
๐ https://lnkd.in/df6qksMB
15. Data Visualization
๐https://imp.i384100.net/k0X6vx
16. Machine Learning
๐ https://imp.i384100.net/nLbkN9
17. Deep Learning
๐ https://imp.i384100.net/R5aPOR
18. Data Science: Linear Regression
๐https://pll.harvard.edu/course/data-science-linear-regression/2023-10
19. Data Science: Wrangling
๐https://edx.org/learn/data-science/harvard-university-data-science-wrangling
20. Linear Algebra
๐ https://pll.harvard.edu/course/data-analysis-life-sciences-2-introduction-linear-models-and-matrix-algebra
21. Probability
๐ https://pll.harvard.edu/course/data-science-probability
22. Introduction to Linear Models and Matrix Algebra
๐https://edx.org/learn/linear-algebra/harvard-university-introduction-to-linear-models-and-matrix-algebra
23. Data Science: Capstone
๐ https://edx.org/learn/data-science/harvard-university-data-science-capstone
24. Data Analysis
๐ https://pll.harvard.edu/course/data-analysis-life-sciences-4-high-dimensional-data-analysis
25. IBM Data Science Professional Certificate
https://imp.i384100.net/9gxbbY
26. Neural Networks and Deep Learning
https://imp.i384100.net/DKrLn2
27. Supervised Machine Learning: Regression and Classification
https://imp.i384100.net/g1KJEA
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #IBMDataScience #FreeCourses #Certification #LearnDataScience
๐22โค2
Forwarded from Python | Machine Learning | Coding | R
MIT's "Machine Learning" lecture notes
PDF: https://introml.mit.edu/_static/spring24/LectureNotes/6_390_lecture_notes_spring24.pdf
PDF: https://introml.mit.edu/_static/spring24/LectureNotes/6_390_lecture_notes_spring24.pdf
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #IBMDataScience #FreeCourses #Certification #LearnDataScience
https://t.iss.one/CodeProgrammerโ๏ธ
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4๐3
"Introduction to Applied Linear Algebra" by S. Boyd (Stanford) & L. Vandenberghe (UCLA)
๐ Freely available at: https://web.stanford.edu/~boyd/vmls/
๐ฝ Lecture Videos at: https://youtube.com/playlist?list=PLoROMvodv4rMz-WbFQtNUsUElIh2cPmN9
๐ Freely available at: https://web.stanford.edu/~boyd/vmls/
๐ฝ Lecture Videos at: https://youtube.com/playlist?list=PLoROMvodv4rMz-WbFQtNUsUElIh2cPmN9
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #IBMDataScience #FreeCourses #Certification #LearnDataScience
https://t.iss.one/CodeProgrammerโ๏ธ
Please open Telegram to view this post
VIEW IN TELEGRAM
๐5๐ฅ2
๐ Stem-Leaf Plot - An intelligent visualization!
It's a simple and effective way to visualize and compare datasets.
Give it a try next time you need to compare datasets!
โ๐ฝ Have you used stem-leaf plots before?
It's a simple and effective way to visualize and compare datasets.
๐ Imagine we have two datasets: Set 1 (7, 12, 14, 17, 19, 23, 25) and Set 2 (3, 11, 16, 18, 20, 21, 24). We'll use a stem-leaf plot to compare them.
๐ฟ First, let's create the 'stem' which represents the tens place (0, 1, 2) and the 'leaf' represents the ones place (0-9).
๐ By comparing the plots, we can see that Dataset 1 has higher values in the tens place, while Dataset 2 has a more uniform distribution.
๐ฏ Stem-leaf plots are great for small datasets and provide a clear picture of data distribution. The special thing about a stem-and-leaf diagram is that the original data can be read out of the graphical representation.
Give it a try next time you need to compare datasets!
โ๐ฝ Have you used stem-leaf plots before?
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #IBMDataScience #FreeCourses #Certification #LearnDataScience
https://t.iss.one/CodeProgrammer โ๏ธ
๐4โค2๐ฅ2๐1
Forwarded from Python | Machine Learning | Coding | R
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #IBMDataScience #FreeCourses #Certification #LearnDataScience
https://t.iss.one/CodeProgrammer๐ฅ
Please open Telegram to view this post
VIEW IN TELEGRAM
๐6
Forwarded from Python | Machine Learning | Coding | R
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming
https://t.iss.one/CodeProgrammer๐ฅ
Please open Telegram to view this post
VIEW IN TELEGRAM
๐6๐ฅ5
Forwarded from Python | Machine Learning | Coding | R
๐ I've brought you 10 of the best portfolios from data science professionals, each of whom has followed a unique path! Check out these 10 and get inspired to build a strong portfolio of your own!๐
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming
https://t.iss.one/CodeProgrammer๐ง
Please open Telegram to view this post
VIEW IN TELEGRAM
๐7โค1
Forwarded from Python | Machine Learning | Coding | R
Supervised Learning: Classification and Regression
Download: https://faculty.ucmerced.edu/mcarreira-perpinan/teaching/CSE176/lecturenotes.pdf
Download: https://faculty.ucmerced.edu/mcarreira-perpinan/teaching/CSE176/lecturenotes.pdf
#SupervisedLearning #MachineLearning #Classification #Regression #MLNotes #DataScience #AIResources #MLTheory #MLLectures #LearnML
โ๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐ฅ3โค2๐1
This media is not supported in your browser
VIEW IN TELEGRAM
๐๐จ๐ ๐ข๐ฌ๐ญ๐ข๐ ๐๐๐ ๐ซ๐๐ฌ๐ฌ๐ข๐จ๐ง ๐๐ฑ๐ฉ๐ฅ๐๐ข๐ง๐๐ ๐ฌ๐ข๐ฆ๐ฉ๐ฅ๐ฒ
If youโve just started learning Machine Learning, ๐๐จ๐ ๐ข๐ฌ๐ญ๐ข๐ ๐๐๐ ๐ซ๐๐ฌ๐ฌ๐ข๐จ๐ง is one of the most important and misunderstood algorithms.
Hereโs everything you need to know ๐
๐ โจ ๐๐ก๐๐ญ ๐ข๐ฌ ๐๐จ๐ ๐ข๐ฌ๐ญ๐ข๐ ๐๐๐ ๐ซ๐๐ฌ๐ฌ๐ข๐จ๐ง?
Itโs a supervised ML algorithm used to predict probabilities and classify data into binary outcomes (like 0 or 1, Yes or No, Spam or Not Spam).
๐ โจ ๐๐จ๐ฐ ๐ข๐ญ ๐ฐ๐จ๐ซ๐ค๐ฌ?
It starts like Linear Regression, but instead of outputting continuous values, it passes the result through a ๐ฌ๐ข๐ ๐ฆ๐จ๐ข๐ ๐๐ฎ๐ง๐๐ญ๐ข๐จ๐ง to map the result between 0 and 1.
๐๐ณ๐ฐ๐ฃ๐ข๐ฃ๐ช๐ญ๐ช๐ต๐บ = ๐ / (๐ + ๐โป(๐ฐ๐ฑ + ๐))
Here,
๐ฐ = weights
๐ฑ = inputs
๐ = bias
๐ = Eulerโs number (approx. 2.718)
๐ โจ ๐๐ก๐ฒ ๐ง๐จ๐ญ ๐๐ข๐ง๐๐๐ซ ๐๐๐ ๐ซ๐๐ฌ๐ฌ๐ข๐จ๐ง?
Because Linear Regression predicts any number from -โ to +โ, which doesnโt make sense for probability.
We need outputs between 0 and 1 and thatโs where the sigmoid function helps.
๐ โจ ๐๐จ๐ฌ๐ฌ ๐ ๐ฎ๐ง๐๐ญ๐ข๐จ๐ง ๐ฎ๐ฌ๐๐?
๐๐ข๐ง๐๐ซ๐ฒ ๐๐ซ๐จ๐ฌ๐ฌ-๐๐ง๐ญ๐ซ๐จ๐ฉ๐ฒ
โ = โ(y log(p) + (1 โ y) log(1 โ p))
Where y is the actual value (0 or 1), and p is the predicted probability
๐ โจ ๐๐ฉ๐ฉ๐ฅ๐ข๐๐๐ญ๐ข๐จ๐ง๐ฌ ๐ข๐ง ๐ซ๐๐๐ฅ ๐ฅ๐ข๐๐:
๐๐ฆ๐๐ข๐ฅ ๐๐ฉ๐๐ฆ ๐๐๐ญ๐๐๐ญ๐ข๐จ๐ง
๐๐ข๐ฌ๐๐๐ฌ๐ ๐๐ซ๐๐๐ข๐๐ญ๐ข๐จ๐ง
๐๐ฎ๐ฌ๐ญ๐จ๐ฆ๐๐ซ ๐๐ก๐ฎ๐ซ๐ง ๐๐ซ๐๐๐ข๐๐ญ๐ข๐จ๐ง
๐๐ฅ๐ข๐๐ค-๐๐ก๐ซ๐จ๐ฎ๐ ๐ก ๐๐๐ญ๐ ๐๐ซ๐๐๐ข๐๐ญ๐ข๐จ๐ง
๐๐ข๐ง๐๐ซ๐ฒ ๐ฌ๐๐ง๐ญ๐ข๐ฆ๐๐ง๐ญ ๐๐ฅ๐๐ฌ๐ฌ๐ข๐๐ข๐๐๐ญ๐ข๐จ๐ง
๐ โจ ๐๐ฌ. ๐๐ญ๐ก๐๐ซ ๐๐ฅ๐๐ฌ๐ฌ๐ข๐๐ข๐๐ซ๐ฌ
Itโs fast, interpretable, and easy to implement, but it struggles with non-linearly separable data unlike Decision Trees or SVMs.
๐ โจ ๐๐๐ง ๐ข๐ญ ๐ก๐๐ง๐๐ฅ๐ ๐ฆ๐ฎ๐ฅ๐ญ๐ข๐ฉ๐ฅ๐ ๐๐ฅ๐๐ฌ๐ฌ๐๐ฌ?
Yes, using One-vs-Rest (OvR) or Softmax in Multinomial Logistic Regression.
๐ โจ ๐๐ฑ๐๐ฆ๐ฉ๐ฅ๐ ๐ข๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง
If youโve just started learning Machine Learning, ๐๐จ๐ ๐ข๐ฌ๐ญ๐ข๐ ๐๐๐ ๐ซ๐๐ฌ๐ฌ๐ข๐จ๐ง is one of the most important and misunderstood algorithms.
Hereโs everything you need to know ๐
๐ โจ ๐๐ก๐๐ญ ๐ข๐ฌ ๐๐จ๐ ๐ข๐ฌ๐ญ๐ข๐ ๐๐๐ ๐ซ๐๐ฌ๐ฌ๐ข๐จ๐ง?
Itโs a supervised ML algorithm used to predict probabilities and classify data into binary outcomes (like 0 or 1, Yes or No, Spam or Not Spam).
๐ โจ ๐๐จ๐ฐ ๐ข๐ญ ๐ฐ๐จ๐ซ๐ค๐ฌ?
It starts like Linear Regression, but instead of outputting continuous values, it passes the result through a ๐ฌ๐ข๐ ๐ฆ๐จ๐ข๐ ๐๐ฎ๐ง๐๐ญ๐ข๐จ๐ง to map the result between 0 and 1.
๐๐ณ๐ฐ๐ฃ๐ข๐ฃ๐ช๐ญ๐ช๐ต๐บ = ๐ / (๐ + ๐โป(๐ฐ๐ฑ + ๐))
Here,
๐ฐ = weights
๐ฑ = inputs
๐ = bias
๐ = Eulerโs number (approx. 2.718)
๐ โจ ๐๐ก๐ฒ ๐ง๐จ๐ญ ๐๐ข๐ง๐๐๐ซ ๐๐๐ ๐ซ๐๐ฌ๐ฌ๐ข๐จ๐ง?
Because Linear Regression predicts any number from -โ to +โ, which doesnโt make sense for probability.
We need outputs between 0 and 1 and thatโs where the sigmoid function helps.
๐ โจ ๐๐จ๐ฌ๐ฌ ๐ ๐ฎ๐ง๐๐ญ๐ข๐จ๐ง ๐ฎ๐ฌ๐๐?
๐๐ข๐ง๐๐ซ๐ฒ ๐๐ซ๐จ๐ฌ๐ฌ-๐๐ง๐ญ๐ซ๐จ๐ฉ๐ฒ
โ = โ(y log(p) + (1 โ y) log(1 โ p))
Where y is the actual value (0 or 1), and p is the predicted probability
๐ โจ ๐๐ฉ๐ฉ๐ฅ๐ข๐๐๐ญ๐ข๐จ๐ง๐ฌ ๐ข๐ง ๐ซ๐๐๐ฅ ๐ฅ๐ข๐๐:
๐๐ฆ๐๐ข๐ฅ ๐๐ฉ๐๐ฆ ๐๐๐ญ๐๐๐ญ๐ข๐จ๐ง
๐๐ข๐ฌ๐๐๐ฌ๐ ๐๐ซ๐๐๐ข๐๐ญ๐ข๐จ๐ง
๐๐ฎ๐ฌ๐ญ๐จ๐ฆ๐๐ซ ๐๐ก๐ฎ๐ซ๐ง ๐๐ซ๐๐๐ข๐๐ญ๐ข๐จ๐ง
๐๐ฅ๐ข๐๐ค-๐๐ก๐ซ๐จ๐ฎ๐ ๐ก ๐๐๐ญ๐ ๐๐ซ๐๐๐ข๐๐ญ๐ข๐จ๐ง
๐๐ข๐ง๐๐ซ๐ฒ ๐ฌ๐๐ง๐ญ๐ข๐ฆ๐๐ง๐ญ ๐๐ฅ๐๐ฌ๐ฌ๐ข๐๐ข๐๐๐ญ๐ข๐จ๐ง
๐ โจ ๐๐ฌ. ๐๐ญ๐ก๐๐ซ ๐๐ฅ๐๐ฌ๐ฌ๐ข๐๐ข๐๐ซ๐ฌ
Itโs fast, interpretable, and easy to implement, but it struggles with non-linearly separable data unlike Decision Trees or SVMs.
๐ โจ ๐๐๐ง ๐ข๐ญ ๐ก๐๐ง๐๐ฅ๐ ๐ฆ๐ฎ๐ฅ๐ญ๐ข๐ฉ๐ฅ๐ ๐๐ฅ๐๐ฌ๐ฌ๐๐ฌ?
Yes, using One-vs-Rest (OvR) or Softmax in Multinomial Logistic Regression.
๐ โจ ๐๐ฑ๐๐ฆ๐ฉ๐ฅ๐ ๐ข๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
pred = model.predict(X_test)
#LogisticRegression #MachineLearning #MLAlgorithms #SupervisedLearning #BinaryClassification #SigmoidFunction #PythonML #ScikitLearn #MLForBeginners #DataScienceBasics #MLExplained #ClassificationModels #AIApplications #PredictiveModeling #MLRoadmap
โ๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค9๐ฅ2