Data Science Machine Learning Data Analysis
37.9K subscribers
2.81K photos
30 videos
39 files
1.26K links
This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning

Cross promotion and ads: @hussein_sheikho
Download Telegram
Topic: Python Matplotlib – From Easy to Top: Part 2 of 6: Subplots, Figures, and Layout Management

---

### 1. Introduction to Figures and Axes

• In Matplotlib, a Figure is the entire image or window on which everything is drawn.
• An Axes is a part of the figure where data is plotted — it contains titles, labels, ticks, lines, etc.

Basic hierarchy:

* Figure ➝ contains one or more Axes
* Axes ➝ the area where the data is actually plotted
* Axis ➝ x-axis and y-axis inside an Axes

import matplotlib.pyplot as plt
import numpy as np


---

### 2. Creating Multiple Subplots using `plt.subplot()`

x = np.linspace(0, 2*np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)

plt.subplot(2, 1, 1)
plt.plot(x, y1, label="sin(x)")
plt.title("First Subplot")

plt.subplot(2, 1, 2)
plt.plot(x, y2, label="cos(x)", color='green')
plt.title("Second Subplot")

plt.tight_layout()
plt.show()


Explanation:

* subplot(2, 1, 1) means 2 rows, 1 column, this is the first plot.
* tight_layout() prevents overlap between plots.

---

### 3. Creating Subplots with `plt.subplots()` (Recommended)

fig, axs = plt.subplots(2, 2, figsize=(8, 6))

x = np.linspace(0, 10, 100)

axs[0, 0].plot(x, np.sin(x))
axs[0, 0].set_title("sin(x)")

axs[0, 1].plot(x, np.cos(x))
axs[0, 1].set_title("cos(x)")

axs[1, 0].plot(x, np.tan(x))
axs[1, 0].set_title("tan(x)")
axs[1, 0].set_ylim(-10, 10)

axs[1, 1].plot(x, np.exp(-x))
axs[1, 1].set_title("exp(-x)")

plt.tight_layout()
plt.show()


---

### 4. Sharing Axes Between Subplots

fig, axs = plt.subplots(1, 2, sharey=True)

x = np.linspace(0, 10, 100)

axs[0].plot(x, np.sin(x))
axs[0].set_title("sin(x)")

axs[1].plot(x, np.cos(x), color='red')
axs[1].set_title("cos(x)")

plt.show()


---

### 5. Adjusting Spacing with `subplots_adjust()`

fig, axs = plt.subplots(2, 2)

fig.subplots_adjust(hspace=0.4, wspace=0.3)


---

### 6. Nested Plots Using `inset_axes`

You can add a small plot inside another:

from mpl_toolkits.axes_grid1.inset_locator import inset_axes

fig, ax = plt.subplots()
x = np.linspace(0, 10, 100)
y = np.sin(x)

ax.plot(x, y)
ax.set_title("Main Plot")

inset_ax = inset_axes(ax, width="30%", height="30%", loc=1)
inset_ax.plot(x, np.cos(x), color='orange')
inset_ax.set_title("Inset", fontsize=8)

plt.show()


---

### 7. Advanced Layout: Gridspec

import matplotlib.gridspec as gridspec

fig = plt.figure(figsize=(8, 6))
gs = gridspec.GridSpec(3, 3)

ax1 = fig.add_subplot(gs[0, :])
ax2 = fig.add_subplot(gs[1, :-1])
ax3 = fig.add_subplot(gs[1:, -1])
ax4 = fig.add_subplot(gs[2, 0])
ax5 = fig.add_subplot(gs[2, 1])

ax1.set_title("Top")
ax2.set_title("Left")
ax3.set_title("Right")
ax4.set_title("Bottom Left")
ax5.set_title("Bottom Center")

plt.tight_layout()
plt.show()


---

### 8. Summary

• Use subplot() for quick layouts and subplots() for flexibility.
• Share axes to align multiple plots.
• Use inset_axes and gridspec for custom and complex layouts.
• Always use tight_layout() or subplots_adjust() to clean up spacing.

---

### Exercise

• Create a 2x2 grid of subplots showing different trigonometric functions.
• Add an inset plot inside a sine wave chart.
• Use Gridspec to create an asymmetric layout with at least 5 different plots.

---

#Python #Matplotlib #Subplots #DataVisualization #Gridspec #LayoutManagement

https://t.iss.one/DataScienceM
1