Machine Learning
39.2K subscribers
3.83K photos
32 videos
41 files
1.3K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
🌟 Vision Transformer (ViT) Tutorial – Part 5: Efficient Vision Transformers – MobileViT, TinyViT & Edge Deployment

Read lesson: https://hackmd.io/@husseinsheikho/vit-5

#MobileViT #TinyViT #EfficientViT #EdgeAI #ModelOptimization #ONNX #TensorRT #TorchServe #DeepLearning #ComputerVision #Transformers

βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❀2
🌟 Vision Transformer (ViT) Tutorial – Part 6: Vision Transformers in Production – MLOps, Monitoring & CI/CD

Learn more: https://hackmd.io/@husseinsheikho/vit-6

#MLOps #ModelMonitoring #CIforML #MLflow #WandB #Kubeflow #ProductionAI #DeepLearning #ComputerVision #Transformers #AIOps

βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❀1
🌟 Vision Transformer (ViT) Tutorial – Part 7: The Future of Vision Transformers – Multimodal, 3D, and Beyond

Learn: https://hackmd.io/@husseinsheikho/vit-7

#FutureOfViT #MultimodalAI #3DViT #TimeSformer #PaLME #MedicalAI #EmbodiedAI #RetNet #Mamba #NextGenAI #DeepLearning #ComputerVision #Transformers

βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❀2
πŸ”₯ Master Vision Transformers with 65+ MCQs! πŸ”₯

Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?

🧠 Dive into 65+ curated Multiple Choice Questions covering the fundamentals, architecture, training, and applications of ViT β€” all with answers!

🌐 Explore Now: https://hackmd.io/@husseinsheikho/vit-mcq

πŸ”Ή Table of Contents
Basic Concepts (Q1–Q15)
Architecture & Components (Q16–Q30)
Attention & Transformers (Q31–Q45)
Training & Optimization (Q46–Q55)
Advanced & Real-World Applications (Q56–Q65)
Answer Key & Explanations

#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #MCQ #InterviewPrep


βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
❀6
✨ Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset ✨

πŸ“– Table of Contents Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset Introduction Dataset and Task Overview About the Dataset What Are We Detecting? Defining Pothole Severity Can the Pothole Severity Logic Be Improved? Configuring Your Development Environment Training…...

🏷️ #ComputerVision #DeepLearning #ObjectDetection #Tutorial #YOLO
πŸ‘1
✨ Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset ✨

πŸ“– Table of Contents Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset Introduction Dataset and Task Overview About the Dataset What Are We Detecting? Defining Pothole Severity Can the Pothole Severity Logic Be Improved? Configuring Your Development Environment Training…...

🏷️ #ComputerVision #DeepLearning #ObjectDetection #Tutorial #YOLO
✨ Sharpen Your Vision: Super-Resolution of CCTV Images Using Hugging Face Diffusers ✨

πŸ“– Table of Contents Sharpen Your Vision: Super-Resolution of CCTV Images Using Hugging Face Diffusers Configuring Your Development Environment Problem Statement How Does Super-Resolution Solve This? State-of-the-Art Approaches Generative Adversarial Networks (GANs) Diffusion Models Implementing Diffus...

🏷️ #ArtificialIntelligence #ComputerVision #DeepLearning #ImageProcessing #MachineLearning #Tutorial
✨ Unlocking Image Clarity: A Comprehensive Guide to Super-Resolution Techniques ✨

πŸ“– Table of Contents Unlocking Image Clarity: A Comprehensive Guide to Super-Resolution Techniques Introduction Configuring Your Development Environment Need Help Configuring Your Development Environment? What Is Super-Resolution? Usual Problems with Low-Resolution Imagery Traditional Computer Vision A...

🏷️ #ArtificialIntelligence #ComputerVision #DeepLearning #ImageProcessing #MachineLearning #TechnologyApplications #Tutorial
✨ CycleGAN: Unpaired Image-to-Image Translation (Part 1) ✨

πŸ“– Table of Contents CycleGAN: Unpaired Image-to-Image Translation (Part 1) Introduction Unpaired Image Translation CycleGAN Pipeline and Training Loss Formulation Adversarial Loss Cycle Consistency Summary Citation Information CycleGAN: Unpaired Image-to-Image Translation (Part 1) In this tutorial, yo...

🏷️ #ComputerVision #CycleGAN #DeepLearning #Keras #KerasandTensorFlow #TensorFlow #UnpairedImageTranslation
✨ Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset ✨

πŸ“– Table of Contents Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset Introduction Dataset and Task Overview About the Dataset What Are We Detecting? Defining Pothole Severity Can the Pothole Severity Logic Be Improved? Configuring Your Development Environment Training…...

🏷️ #ComputerVision #DeepLearning #ObjectDetection #Tutorial #YOLO
✨ People Tracker with YOLOv12 and Centroid Tracker ✨

πŸ“– Table of Contents People Tracker with YOLOv12 and Centroid Tracker Introduction Why People Tracker Monitoring Matters How YOLOv12 Enables Real-Time Applications Configuring Your Development Environment Downloading the Input Video Install gdown Download the Video Visualizing the Inference and Trackin...

🏷️ #ComputerVision #ObjectDetection #PeopleTracker #Tutorial #YOLOv12
✨ Meet BLIP: The Vision-Language Model Powering Image Captioning ✨

πŸ“– Table of Contents Meet BLIP: The Vision-Language Model Powering Image Captioning What Is Image Captioning and Why Is It Challenging? Why It’s Challenging Why Traditional Vision Tasks Aren’t Enough Configuring Your Development Environment A Brief History of Image Captioning Models…...

🏷️ #ComputerVision #DeepLearning #ImageCaptioning #MultimodalAI #Tutorial
❀1
πŸ€–πŸ§  Thinking with Camera 2.0: A Powerful Multimodal Model for Camera-Centric Understanding and Generation

πŸ—“οΈ 14 Oct 2025
πŸ“š AI News & Trends

In the rapidly evolving field of multimodal AI, bridging gaps between vision, language and geometry is one of the frontier challenges. Traditional vision-language models excel at describing what is in an image β€œa cat on a sofa” β€œa red car on the road” but struggle to reason about how the image was captured: the camera’s ...

#MultimodalAI #CameraCentricUnderstanding #VisionLanguageModels #AIResearch #ComputerVision #GenerativeModels
# Real-World Case Study: E-commerce Product Pipeline
import boto3
from PIL import Image
import io

def process_product_image(s3_bucket, s3_key):
# 1. Download from S3
s3 = boto3.client('s3')
response = s3.get_object(Bucket=s3_bucket, Key=s3_key)
img = Image.open(io.BytesIO(response['Body'].read()))

# 2. Standardize dimensions
img = img.convert("RGB")
img = img.resize((1200, 1200), Image.LANCZOS)

# 3. Remove background (simplified)
# In practice: use rembg or AWS Rekognition
img = remove_background(img)

# 4. Generate variants
variants = {
"web": img.resize((800, 800)),
"mobile": img.resize((400, 400)),
"thumbnail": img.resize((100, 100))
}

# 5. Upload to CDN
for name, variant in variants.items():
buffer = io.BytesIO()
variant.save(buffer, "JPEG", quality=95)
s3.upload_fileobj(
buffer,
"cdn-bucket",
f"products/{s3_key.split('/')[-1].split('.')[0]}_{name}.jpg",
ExtraArgs={'ContentType': 'image/jpeg', 'CacheControl': 'max-age=31536000'}
)

# 6. Generate WebP version
webp_buffer = io.BytesIO()
img.save(webp_buffer, "WEBP", quality=85)
s3.upload_fileobj(webp_buffer, "cdn-bucket", f"products/{s3_key.split('/')[-1].split('.')[0]}.webp")

process_product_image("user-uploads", "products/summer_dress.jpg")


By: @DataScienceM πŸ‘

#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
❀1