Machine Learning
39.2K subscribers
3.83K photos
32 videos
41 files
1.3K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ“š An Introduction to Optimization (2023)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/834

πŸ’¬ Tags: #Optimization

πŸ‘‰ BEST DATA SCIENCE CHANNELS ON TELEGRAM πŸ‘ˆ
πŸ‘8
SciPy.pdf
206.4 KB
Unlock the full power of SciPy with my comprehensive cheat sheet!
Master essential functions for:

Function optimization and solving equations

Linear algebra operations

ODE integration and statistical analysis

Signal processing and spatial data manipulation

Data clustering and distance computation ...and much more!


#Python #SciPy #MachineLearning #DataScience #CheatSheet #ArtificialIntelligence #Optimization #LinearAlgebra #SignalProcessing #BigData



πŸ’― BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘5
Topic: Python SciPy – From Easy to Top: Part 1 of 6: Introduction and Basics

---

1. What is SciPy?

β€’ SciPy is an open-source Python library used for scientific and technical computing.

β€’ Built on top of NumPy, it provides many user-friendly and efficient numerical routines such as routines for numerical integration, optimization, interpolation, eigenvalue problems, algebraic equations, and others.

---

2. Installing SciPy

If you don’t have SciPy installed yet, use:

pip install scipy


---

3. Importing SciPy Modules

SciPy is organized into sub-packages for different tasks. Example:

import scipy.integrate
import scipy.optimize
import scipy.linalg


---

4. Key SciPy Sub-packages

β€’ scipy.integrate β€” Numerical integration and ODE solvers.
β€’ scipy.optimize β€” Optimization and root finding.
β€’ scipy.linalg β€” Linear algebra routines (more advanced than NumPy’s).
β€’ scipy.signal β€” Signal processing.
β€’ scipy.fft β€” Fast Fourier Transforms.
β€’ scipy.stats β€” Statistical functions.

---

5. Basic Example: Numerical Integration

Calculate the integral of sin(x) from 0 to pi:

import numpy as np
from scipy import integrate

result, error = integrate.quad(np.sin, 0, np.pi)
print("Integral of sin(x) from 0 to pi:", result)


---

6. Basic Example: Root Finding

Find the root of the function f(x) = x^2 - 4:

from scipy import optimize

def f(x):
return x**2 - 4

root = optimize.root_scalar(f, bracket=[0, 3])
print("Root:", root.root)


---

7. SciPy vs NumPy

β€’ NumPy focuses on basic array operations and linear algebra.

β€’ SciPy extends functionality with advanced scientific algorithms.

---

8. Summary

β€’ SciPy is essential for scientific computing in Python.

β€’ It contains many specialized sub-packages.

β€’ Understanding SciPy’s structure helps solve complex numerical problems easily.

---

Exercise

β€’ Calculate the integral of e^(-x^2) from -infinity to +infinity using scipy.integrate.quad.

β€’ Find the root of cos(x) - x = 0 using scipy.optimize.root_scalar.

---

#Python #SciPy #ScientificComputing #NumericalIntegration #Optimization

https://t.iss.one/DataScienceM
❀3πŸ”₯1
Topic: Python SciPy – From Easy to Top: Part 3 of 6: Optimization Basics

---

1. What is Optimization?

β€’ Optimization is the process of finding the minimum or maximum of a function.

β€’ SciPy provides tools to solve these problems efficiently.

---

2. Using `scipy.optimize.minimize`

This function minimizes a scalar function of one or more variables.

Example: Minimize the function f(x) = (x - 3)^2

from scipy import optimize

def f(x):
return (x - 3)**2

result = optimize.minimize(f, x0=0)
print("Minimum value:", result.fun)
print("At x =", result.x)


---

**3. Minimizing Multivariable Functions**

Example: Minimize f(x, y) = (x - 2)^2 + (y + 3)^2

def f(vars):
x, y = vars
return (x - 2)**2 + (y + 3)**2

result = optimize.minimize(f, x0=[0, 0])
print("Minimum value:", result.fun)
print("At x, y =", result.x)


---

**4. Using Bounds and Constraints**

You can restrict the variables within bounds or constraints.

Example: Minimize f(x) = (x - 3)^2 with x between 0 and 5

result = optimize.minimize(f, x0=0, bounds=[(0, 5)])
print("Minimum with bounds:", result.fun)
print("At x =", result.x)


---

5. Root Finding with `optimize.root_scalar`

Find a root of a scalar function.

Example: Find root of f(x) = x^3 - 1 between 0 and 2

def f(x):
return x**3 - 1

root = optimize.root_scalar(f, bracket=[0, 2])
print("Root:", root.root)


---

6. Summary

β€’ SciPy’s optimization tools help find minima, maxima, and roots.

β€’ Supports single and multivariable problems with constraints.

---

Exercise

β€’ Minimize the function f(x) = x^4 - 3x^3 + 2 over the range \[-2, 3].

β€’ Find the root of f(x) = cos(x) - x near x=1.

---

#Python #SciPy #Optimization #RootFinding #ScientificComputing

https://t.iss.one/DataScienceM
❀3