Machine Learning
39.2K subscribers
3.83K photos
32 videos
41 files
1.3K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
Free Certification Courses to Learn Data Analytics in 2025:

1. Python
๐Ÿ”— https://imp.i384100.net/5gmXXo

2. SQL
๐Ÿ”— https://edx.org/learn/relational-databases/stanford-university-databases-relational-databases-and-sql

3. Statistics and R
๐Ÿ”— https://edx.org/learn/r-programming/harvard-university-statistics-and-r

4. Data Science: R Basics
๐Ÿ”—https://edx.org/learn/r-programming/harvard-university-data-science-r-basics

5. Excel and PowerBI
๐Ÿ”— https://learn.microsoft.com/en-gb/training/paths/modern-analytics/

6. Data Science: Visualization
๐Ÿ”—https://edx.org/learn/data-visualization/harvard-university-data-science-visualization

7. Data Science: Machine Learning
๐Ÿ”—https://edx.org/learn/machine-learning/harvard-university-data-science-machine-learning

8. R
๐Ÿ”—https://imp.i384100.net/rQqomy

9. Tableau
๐Ÿ”—https://imp.i384100.net/MmW9b3

10. PowerBI
๐Ÿ”— https://lnkd.in/dpmnthEA

11. Data Science: Productivity Tools
๐Ÿ”— https://lnkd.in/dGhPYg6N

12. Data Science: Probability
๐Ÿ”—https://mygreatlearning.com/academy/learn-for-free/courses/probability-for-data-science

13. Mathematics
๐Ÿ”—https://matlabacademy.mathworks.com

14. Statistics
๐Ÿ”— https://lnkd.in/df6qksMB

15. Data Visualization
๐Ÿ”—https://imp.i384100.net/k0X6vx

16. Machine Learning
๐Ÿ”— https://imp.i384100.net/nLbkN9

17. Deep Learning
๐Ÿ”— https://imp.i384100.net/R5aPOR

18. Data Science: Linear Regression
๐Ÿ”—https://pll.harvard.edu/course/data-science-linear-regression/2023-10

19. Data Science: Wrangling
๐Ÿ”—https://edx.org/learn/data-science/harvard-university-data-science-wrangling

20. Linear Algebra
๐Ÿ”— https://pll.harvard.edu/course/data-analysis-life-sciences-2-introduction-linear-models-and-matrix-algebra

21. Probability
๐Ÿ”— https://pll.harvard.edu/course/data-science-probability

22. Introduction to Linear Models and Matrix Algebra
๐Ÿ”—https://edx.org/learn/linear-algebra/harvard-university-introduction-to-linear-models-and-matrix-algebra

23. Data Science: Capstone
๐Ÿ”— https://edx.org/learn/data-science/harvard-university-data-science-capstone

24. Data Analysis
๐Ÿ”— https://pll.harvard.edu/course/data-analysis-life-sciences-4-high-dimensional-data-analysis

25. IBM Data Science Professional Certificate
https://imp.i384100.net/9gxbbY

26. Neural Networks and Deep Learning
https://imp.i384100.net/DKrLn2

27. Supervised Machine Learning: Regression and Classification
https://imp.i384100.net/g1KJEA

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #IBMDataScience #FreeCourses #Certification #LearnDataScience
๐Ÿ‘22โค2
๐Ÿƒ Stem-Leaf Plot - An intelligent visualization!

It's a simple and effective way to visualize and compare datasets.

๐Ÿ“Š Imagine we have two datasets: Set 1 (7, 12, 14, 17, 19, 23, 25) and Set 2 (3, 11, 16, 18, 20, 21, 24). We'll use a stem-leaf plot to compare them.

๐ŸŒฟ First, let's create the 'stem' which represents the tens place (0, 1, 2) and the 'leaf' represents the ones place (0-9).

๐Ÿ” By comparing the plots, we can see that Dataset 1 has higher values in the tens place, while Dataset 2 has a more uniform distribution.

๐ŸŽฏ Stem-leaf plots are great for small datasets and provide a clear picture of data distribution. The special thing about a stem-and-leaf diagram is that the original data can be read out of the graphical representation.


Give it a try next time you need to compare datasets!

โœ๐Ÿฝ Have you used stem-leaf plots before?

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #IBMDataScience #FreeCourses #Certification #LearnDataScience

https://t.iss.one/CodeProgrammer โœˆ๏ธ
๐Ÿ‘4โค2๐Ÿ”ฅ2๐Ÿ‘Ž1
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘6๐Ÿ”ฅ5
๐Ÿ—‚ 10 โ€œReal Data Science Portfolioโ€ Examples

๐Ÿ“ I've brought you 10 of the best portfolios from data science professionals, each of whom has followed a unique path! Check out these 10 and get inspired to build a strong portfolio of your own!๐Ÿ‘‡
1๏ธโƒฃ Ken Jee Portfolio | Data Scientist
โ–ถ๏ธ Field: Sports data analysis
๐Ÿ‘ค Link: Portfolio

2๏ธโƒฃ Yassine Alouini's Portfolio | Kegel Master
โ–ถ๏ธ Domain: Machine Learning and Kegel Competitions
๐Ÿ‘ค Link: Portfolio

3๏ธโƒฃ Tatman Portfolio | Data Scientist
โ–ถ๏ธ Domain: Natural Language Processing (NLP)
๐Ÿ‘ค Link: Portfolio

4๏ธโƒฃ Robinson Portfolio | Data Scientist
โ–ถ๏ธ Field: Statistical analysis and R programming
๐Ÿ‘ค Link: Portfolio

5๏ธโƒฃ Siraj Raval's Portfolio | AI Instructor
โ–ถ๏ธ Field: Machine Learning and Artificial Intelligence
๐Ÿ‘ค Link: Portfolio

6๏ธโƒฃ Julia Silge's Portfolio | Data Scientist
โ–ถ๏ธ Domain: Organized data and data visualization
๐Ÿ‘ค Link: Portfolio

7๏ธโƒฃ Mueller Portfolio | Developer Scikit-Learn
โ–ถ๏ธ Field: Machine learning and open source projects
๐Ÿ‘ค Link: Portfolio

8๏ธโƒฃ Wickham Portfolio | Data Scientist
โ–ถ๏ธ Area: R programming and data visualization
๐Ÿ‘ค Link: Portfolio

9๏ธโƒฃ Portfolio of Franรงois Puget | Kegel Master
โ–ถ๏ธ Domain: Advanced Machine Learning Techniques
๐Ÿ‘ค Link: Portfolio

๐Ÿ”Ÿ Emily's Portfolio | Data Analyst at Disney
โ–ถ๏ธ Domain: Data visualization and storytelling
๐Ÿ‘ค Link: Portfolio

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming

https://t.iss.one/CodeProgrammer ๐Ÿง 
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘7โค1
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ”ฅ3โค2๐Ÿ‘1
This media is not supported in your browser
VIEW IN TELEGRAM
๐‹๐จ๐ ๐ข๐ฌ๐ญ๐ข๐œ ๐‘๐ž๐ ๐ซ๐ž๐ฌ๐ฌ๐ข๐จ๐ง ๐„๐ฑ๐ฉ๐ฅ๐š๐ข๐ง๐ž๐ ๐ฌ๐ข๐ฆ๐ฉ๐ฅ๐ฒ

If youโ€™ve just started learning Machine Learning, ๐‹๐จ๐ ๐ข๐ฌ๐ญ๐ข๐œ ๐‘๐ž๐ ๐ซ๐ž๐ฌ๐ฌ๐ข๐จ๐ง is one of the most important and misunderstood algorithms.

Hereโ€™s everything you need to know ๐Ÿ‘‡

๐Ÿ โ‡จ ๐–๐ก๐š๐ญ ๐ข๐ฌ ๐‹๐จ๐ ๐ข๐ฌ๐ญ๐ข๐œ ๐‘๐ž๐ ๐ซ๐ž๐ฌ๐ฌ๐ข๐จ๐ง?

Itโ€™s a supervised ML algorithm used to predict probabilities and classify data into binary outcomes (like 0 or 1, Yes or No, Spam or Not Spam).

๐Ÿ โ‡จ ๐‡๐จ๐ฐ ๐ข๐ญ ๐ฐ๐จ๐ซ๐ค๐ฌ?

It starts like Linear Regression, but instead of outputting continuous values, it passes the result through a ๐ฌ๐ข๐ ๐ฆ๐จ๐ข๐ ๐Ÿ๐ฎ๐ง๐œ๐ญ๐ข๐จ๐ง to map the result between 0 and 1.

๐˜—๐˜ณ๐˜ฐ๐˜ฃ๐˜ข๐˜ฃ๐˜ช๐˜ญ๐˜ช๐˜ต๐˜บ = ๐Ÿ / (๐Ÿ + ๐žโป(๐ฐ๐ฑ + ๐›))

Here,
๐ฐ = weights
๐ฑ = inputs
๐› = bias
๐ž = Eulerโ€™s number (approx. 2.718)

๐Ÿ‘ โ‡จ ๐–๐ก๐ฒ ๐ง๐จ๐ญ ๐‹๐ข๐ง๐ž๐š๐ซ ๐‘๐ž๐ ๐ซ๐ž๐ฌ๐ฌ๐ข๐จ๐ง?

Because Linear Regression predicts any number from -โˆž to +โˆž, which doesnโ€™t make sense for probability.
We need outputs between 0 and 1 and thatโ€™s where the sigmoid function helps.

๐Ÿ’ โ‡จ ๐‹๐จ๐ฌ๐ฌ ๐…๐ฎ๐ง๐œ๐ญ๐ข๐จ๐ง ๐ฎ๐ฌ๐ž๐?

๐๐ข๐ง๐š๐ซ๐ฒ ๐‚๐ซ๐จ๐ฌ๐ฌ-๐„๐ง๐ญ๐ซ๐จ๐ฉ๐ฒ

โ„’ = โˆ’(y log(p) + (1 โˆ’ y) log(1 โˆ’ p))
Where y is the actual value (0 or 1), and p is the predicted probability

๐Ÿ“ โ‡จ ๐€๐ฉ๐ฉ๐ฅ๐ข๐œ๐š๐ญ๐ข๐จ๐ง๐ฌ ๐ข๐ง ๐ซ๐ž๐š๐ฅ ๐ฅ๐ข๐Ÿ๐ž:

๐„๐ฆ๐š๐ข๐ฅ ๐’๐ฉ๐š๐ฆ ๐ƒ๐ž๐ญ๐ž๐œ๐ญ๐ข๐จ๐ง
๐ƒ๐ข๐ฌ๐ž๐š๐ฌ๐ž ๐๐ซ๐ž๐๐ข๐œ๐ญ๐ข๐จ๐ง
๐‚๐ฎ๐ฌ๐ญ๐จ๐ฆ๐ž๐ซ ๐‚๐ก๐ฎ๐ซ๐ง ๐๐ซ๐ž๐๐ข๐œ๐ญ๐ข๐จ๐ง
๐‚๐ฅ๐ข๐œ๐ค-๐“๐ก๐ซ๐จ๐ฎ๐ ๐ก ๐‘๐š๐ญ๐ž ๐๐ซ๐ž๐๐ข๐œ๐ญ๐ข๐จ๐ง
๐๐ข๐ง๐š๐ซ๐ฒ ๐ฌ๐ž๐ง๐ญ๐ข๐ฆ๐ž๐ง๐ญ ๐œ๐ฅ๐š๐ฌ๐ฌ๐ข๐Ÿ๐ข๐œ๐š๐ญ๐ข๐จ๐ง

๐Ÿ” โ‡จ ๐•๐ฌ. ๐Ž๐ญ๐ก๐ž๐ซ ๐‚๐ฅ๐š๐ฌ๐ฌ๐ข๐Ÿ๐ข๐ž๐ซ๐ฌ

Itโ€™s fast, interpretable, and easy to implement, but it struggles with non-linearly separable data unlike Decision Trees or SVMs.

๐Ÿ• โ‡จ ๐‚๐š๐ง ๐ข๐ญ ๐ก๐š๐ง๐๐ฅ๐ž ๐ฆ๐ฎ๐ฅ๐ญ๐ข๐ฉ๐ฅ๐ž ๐œ๐ฅ๐š๐ฌ๐ฌ๐ž๐ฌ?

Yes, using One-vs-Rest (OvR) or Softmax in Multinomial Logistic Regression.

๐Ÿ– โ‡จ ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐ข๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง

from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
pred = model.predict(X_test)


#LogisticRegression #MachineLearning #MLAlgorithms #SupervisedLearning #BinaryClassification #SigmoidFunction #PythonML #ScikitLearn #MLForBeginners #DataScienceBasics #MLExplained #ClassificationModels #AIApplications #PredictiveModeling #MLRoadmap

โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค12๐Ÿ”ฅ2