"Stay up-to-date with the latest information and news in the field of Data Science and Data Analysis by following the DataScienceT channel on Telegram #DataScience #Telegram #DataAnalysis #BigData #MachineLearning #ArtificialIntelligence #DataMining #DataVisualization #Statistics #Python #RProgramming #DeepLearning #NeuralNetworks #NaturalLanguageProcessing #BusinessIntelligence #Analytics #DataEngineering #DataManagement #DataQuality #DataGovernance"
https://t.iss.one/DataScienceT
https://t.iss.one/DataScienceT
Telegram
Data Science | Machine Learning with Python for Researchers
ads: @HusseinSheikho
The Data Science and Python channel is for researchers and advanced programmers
Buy ads: https://telega.io/c/dataScienceT
The Data Science and Python channel is for researchers and advanced programmers
Buy ads: https://telega.io/c/dataScienceT
โคโ๐ฅ2๐2
๐ Data Engineering Made Simple (2024)
1โฃ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2โฃ Download Book: https://t.iss.one/c/1854405158/1865
๐ฌ Tags: #DataEngineering
โ USEFUL CHANNELS FOR YOU โญ๏ธ
1โฃ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2โฃ Download Book: https://t.iss.one/c/1854405158/1865
๐ฌ Tags: #DataEngineering
โ USEFUL CHANNELS FOR YOU โญ๏ธ
๐ Financial Data Engineering (2024)
1โฃ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2โฃ Download Book: https://t.iss.one/c/1854405158/2145
๐ฌ Tags: #DataEngineering
โ USEFUL CHANNELS FOR YOU โญ๏ธ
1โฃ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2โฃ Download Book: https://t.iss.one/c/1854405158/2145
๐ฌ Tags: #DataEngineering
โ USEFUL CHANNELS FOR YOU โญ๏ธ
๐12โค4๐ฅ1
Forwarded from Python | Machine Learning | Coding | R
Polars.pdf
391.5 KB
โ
โ โพ๏ธ Google Colab
โ
#Polars #DataEngineering #PythonLibraries #PandasAlternative #PolarsCheatSheet #DataScienceTools #FastDataProcessing #GoogleColab #DataAnalysis #PythonForDataScience๏ปฟ
โ๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค8๐1
Forwarded from Python | Machine Learning | Coding | R
๐ฌ๐ผ๐๐ฟ_๐๐ฎ๐๐ฎ_๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ_๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐_๐ฆ๐๐๐ฑ๐_๐ฃ๐น๐ฎ๐ป.pdf
7.7 MB
1. Master the fundamentals of Statistics
Understand probability, distributions, and hypothesis testing
Differentiate between descriptive vs inferential statistics
Learn various sampling techniques
2. Get hands-on with Python & SQL
Work with data structures, pandas, numpy, and matplotlib
Practice writing optimized SQL queries
Master joins, filters, groupings, and window functions
3. Build real-world projects
Construct end-to-end data pipelines
Develop predictive models with machine learning
Create business-focused dashboards
4. Practice case study interviews
Learn to break down ambiguous business problems
Ask clarifying questions to gather requirements
Think aloud and structure your answers logically
5. Mock interviews with feedback
Use platforms like Pramp or connect with peers
Record and review your answers for improvement
Gather feedback on your explanation and presence
6. Revise machine learning concepts
Understand supervised vs unsupervised learning
Grasp overfitting, underfitting, and bias-variance tradeoff
Know how to evaluate models (precision, recall, F1-score, AUC, etc.)
7. Brush up on system design (if applicable)
Learn how to design scalable data pipelines
Compare real-time vs batch processing
Familiarize with tools: Apache Spark, Kafka, Airflow
8. Strengthen storytelling with data
Apply the STAR method in behavioral questions
Simplify complex technical topics
Emphasize business impact and insight-driven decisions
9. Customize your resume and portfolio
Tailor your resume for each job role
Include links to projects or GitHub profiles
Match your skills to job descriptions
10. Stay consistent and track progress
Set clear weekly goals
Monitor covered topics and completed tasks
Reflect regularly and adapt your plan as needed
#DataScience #InterviewPrep #MLInterviews #DataEngineering #SQL #Python #Statistics #MachineLearning #DataStorytelling #SystemDesign #CareerGrowth #DataScienceRoadmap #PortfolioBuilding #MockInterviews #JobHuntingTips
โ๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค7๐4
๐ฆ๐๐๐๐ฒ๐บ_๐๐ฒ๐๐ถ๐ด๐ป_๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ_๐ณ๐ผ๐ฟ_๐ ๐๐๐ก๐_&_๐๐ฒ๐๐ผ๐ป๐ฑ.pdf
12.5 MB
๐ฆ๐๐๐๐ฒ๐บ ๐๐ฒ๐๐ถ๐ด๐ป ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ ๐ณ๐ผ๐ฟ ๐ ๐๐๐ก๐ & ๐๐ฒ๐๐ผ๐ป๐ฑ ๐
If you're targeting top product companies or leveling up your backend/system design skills, this is for you.
System Design is no longer optional in tech interviews. Itโs a must-have.
From Netflix, Amazon, Uber, YouTube, Reddit, Inc., to Twitter, these case studies and topic breakdowns will help you build real-world architectural thinking.
๐ Save this post. Spend 40 mins/day. Stay consistent.
โ ๐ ๐๐๐-๐๐ป๐ผ๐ ๐๐ผ๐ฟ๐ฒ ๐๐ผ๐ป๐ฐ๐ฒ๐ฝ๐๐
๐ System Design Basics
๐ https://bit.ly/3SuUR0Y)
๐ Horizontal & Vertical Scaling
๐ https://bit.ly/3slq5xh)
๐ Load Balancing & Message Queues
๐ https://bit.ly/3sp0FP4)
๐ HLD vs LLD, Hashing, Monolith vs Microservices
๐ https://bit.ly/3DnEfEm)
๐ Caching, Indexing, Proxies
๐ https://bit.ly/3SvyVDc)
๐ Networking, CDN, How Browsers Work
๐ https://bit.ly/3TOHQRb
๐ DB Sharding, CAP Theorem, Schema Design
๐ https://bit.ly/3CZtfLN
๐ Concurrency, OOP, API Layering
๐ https://bit.ly/3sqQrhj
๐ Estimation, Performance Optimization
๐ https://bit.ly/3z9dSPN
๐ MapReduce, Design Patterns
๐ https://bit.ly/3zcsfmv
๐ SQL vs NoSQL, Cloud Architecture
๐ https://bit.ly/3z8Aa49)
โ ๐ ๐ผ๐๐ ๐๐๐ธ๐ฒ๐ฑ ๐ฆ๐๐๐๐ฒ๐บ ๐๐ฒ๐๐ถ๐ด๐ป ๐ค๐๐ฒ๐๐๐ถ๐ผ๐ป๐
๐ https://bit.ly/3Dp40Ux
๐ https://bit.ly/3E9oH7K
โ ๐๐ฎ๐๐ฒ ๐ฆ๐๐๐ฑ๐ ๐๐ฒ๐ฒ๐ฝ ๐๐ถ๐๐ฒ๐ (๐ฃ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฒ ๐ง๐ต๐ฒ๐๐ฒ!)
๐ Design Netflix
๐ https://bit.ly/3GrAUG1
๐ Design Reddit
๐ https://bit.ly/3OgGJrL
๐ Design Messenger
๐ https://bit.ly/3DoAAXi
๐ Design Instagram
๐ https://bit.ly/3BFeHlh
๐ Design Dropbox
๐ https://bit.ly/3SnhncU
๐ Design YouTube
๐ https://bit.ly/3dFyvvy
๐ Design Tinder
๐ https://bit.ly/3Mcyj3X
๐ Design Yelp
๐ https://bit.ly/3E7IgO5
๐ Design WhatsApp
๐ https://bit.ly/3M2GOhP
๐ Design URL Shortener
๐ https://bit.ly/3xP078x
๐ Design Amazon Prime Video
๐https://bit.ly/3hVpWP4
๐ Design Twitter
๐ https://bit.ly/3qIG9Ih
๐ Design Uber
๐ https://bit.ly/3fyvnlT
๐ Design TikTok
๐ https://bit.ly/3UUlKxP
๐ Design Facebook Newsfeed
๐ https://bit.ly/3RldaW7
๐ Design Web Crawler
๐ https://bit.ly/3DPZTBB
๐ Design API Rate Limiter
๐ https://bit.ly/3BIVuh7
โ ๐๐ถ๐ป๐ฎ๐น ๐ฆ๐๐๐๐ฒ๐บ ๐๐ฒ๐๐ถ๐ด๐ป ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐
๐ All Solved Case Studies
๐ https://bit.ly/3dCG1rc
๐ Design Terms & Terminology
๐ https://bit.ly/3Om9d3H
๐ Complete Basics Series
๐https://bit.ly/3rG1cfr
If you're targeting top product companies or leveling up your backend/system design skills, this is for you.
System Design is no longer optional in tech interviews. Itโs a must-have.
From Netflix, Amazon, Uber, YouTube, Reddit, Inc., to Twitter, these case studies and topic breakdowns will help you build real-world architectural thinking.
๐ Save this post. Spend 40 mins/day. Stay consistent.
โ ๐ ๐๐๐-๐๐ป๐ผ๐ ๐๐ผ๐ฟ๐ฒ ๐๐ผ๐ป๐ฐ๐ฒ๐ฝ๐๐
๐ System Design Basics
๐ https://bit.ly/3SuUR0Y)
๐ Horizontal & Vertical Scaling
๐ https://bit.ly/3slq5xh)
๐ Load Balancing & Message Queues
๐ https://bit.ly/3sp0FP4)
๐ HLD vs LLD, Hashing, Monolith vs Microservices
๐ https://bit.ly/3DnEfEm)
๐ Caching, Indexing, Proxies
๐ https://bit.ly/3SvyVDc)
๐ Networking, CDN, How Browsers Work
๐ https://bit.ly/3TOHQRb
๐ DB Sharding, CAP Theorem, Schema Design
๐ https://bit.ly/3CZtfLN
๐ Concurrency, OOP, API Layering
๐ https://bit.ly/3sqQrhj
๐ Estimation, Performance Optimization
๐ https://bit.ly/3z9dSPN
๐ MapReduce, Design Patterns
๐ https://bit.ly/3zcsfmv
๐ SQL vs NoSQL, Cloud Architecture
๐ https://bit.ly/3z8Aa49)
โ ๐ ๐ผ๐๐ ๐๐๐ธ๐ฒ๐ฑ ๐ฆ๐๐๐๐ฒ๐บ ๐๐ฒ๐๐ถ๐ด๐ป ๐ค๐๐ฒ๐๐๐ถ๐ผ๐ป๐
๐ https://bit.ly/3Dp40Ux
๐ https://bit.ly/3E9oH7K
โ ๐๐ฎ๐๐ฒ ๐ฆ๐๐๐ฑ๐ ๐๐ฒ๐ฒ๐ฝ ๐๐ถ๐๐ฒ๐ (๐ฃ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฒ ๐ง๐ต๐ฒ๐๐ฒ!)
๐ Design Netflix
๐ https://bit.ly/3GrAUG1
๐ Design Reddit
๐ https://bit.ly/3OgGJrL
๐ Design Messenger
๐ https://bit.ly/3DoAAXi
๐ Design Instagram
๐ https://bit.ly/3BFeHlh
๐ Design Dropbox
๐ https://bit.ly/3SnhncU
๐ Design YouTube
๐ https://bit.ly/3dFyvvy
๐ Design Tinder
๐ https://bit.ly/3Mcyj3X
๐ Design Yelp
๐ https://bit.ly/3E7IgO5
๐ Design WhatsApp
๐ https://bit.ly/3M2GOhP
๐ Design URL Shortener
๐ https://bit.ly/3xP078x
๐ Design Amazon Prime Video
๐https://bit.ly/3hVpWP4
๐ Design Twitter
๐ https://bit.ly/3qIG9Ih
๐ Design Uber
๐ https://bit.ly/3fyvnlT
๐ Design TikTok
๐ https://bit.ly/3UUlKxP
๐ Design Facebook Newsfeed
๐ https://bit.ly/3RldaW7
๐ Design Web Crawler
๐ https://bit.ly/3DPZTBB
๐ Design API Rate Limiter
๐ https://bit.ly/3BIVuh7
โ ๐๐ถ๐ป๐ฎ๐น ๐ฆ๐๐๐๐ฒ๐บ ๐๐ฒ๐๐ถ๐ด๐ป ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐
๐ All Solved Case Studies
๐ https://bit.ly/3dCG1rc
๐ Design Terms & Terminology
๐ https://bit.ly/3Om9d3H
๐ Complete Basics Series
๐https://bit.ly/3rG1cfr
#SystemDesign #TechInterviews #MAANGPrep #BackendEngineering #ScalableSystems #HLD #LLD #SoftwareArchitecture #DesignCaseStudies #CloudArchitecture #DataEngineering #DesignPatterns #LoadBalancing #Microservices #DistributedSystems
โ๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐3โค2๐ฅ1
Topic: Python PySpark Data Sheet โ Part 1 of 3: Introduction, Setup, and Core Concepts
---
### 1. What is PySpark?
PySpark is the Python API for Apache Spark, a powerful distributed computing engine for big data processing.
PySpark allows you to leverage the full power of Apache Spark using Python, making it easier to:
โข Handle massive datasets
โข Perform distributed computing
โข Run parallel data transformations
---
### 2. PySpark Ecosystem Components
โข Spark SQL โ Structured data queries with DataFrame and SQL APIs
โข Spark Core โ Fundamental engine for task scheduling and memory management
โข Spark Streaming โ Real-time data processing
โข MLlib โ Machine learning at scale
โข GraphX โ Graph computation
---
### 3. Why PySpark over Pandas?
| Feature | Pandas | PySpark |
| -------------- | --------------------- | ----------------------- |
| Scale | Single machine | Distributed (Cluster) |
| Speed | Slower for large data | Optimized execution |
| Language | Python | Python on JVM via Py4J |
| Learning Curve | Easier | Medium (Big Data focus) |
---
### 4. PySpark Setup in Local Machine
#### Install PySpark via pip:
#### Start PySpark Shell:
#### Sample Code to Initialize SparkSession:
---
### 5. RDD vs DataFrame
| Feature | RDD | DataFrame |
| ------------ | ----------------------- | ------------------------------ |
| Type | Low-level API (objects) | High-level API (structured) |
| Optimization | Manual | Catalyst Optimizer (automatic) |
| Usage | Complex transformations | SQL-like operations |
---
### 6. Creating DataFrames
#### From Python List:
#### From CSV File:
---
### 7. Inspecting DataFrames
---
### 8. Basic Transformations
---
### 9. Working with SQL
---
### 10. Writing Data
---
### 11. Summary of Concepts Covered
โข Spark architecture & PySpark setup
โข Core components of PySpark
โข Differences between RDD and DataFrames
โข How to create, inspect, and manipulate DataFrames
โข SQL support in Spark
โข Reading/writing to/from storage
---
### Exercise
1. Load a sample CSV file and display the schema
2. Add a new column with a calculated value
3. Filter the rows based on a condition
4. Save the result as a new CSV or Parquet file
---
#Python #PySpark #BigData #ApacheSpark #DataEngineering #ETL
https://t.iss.one/DataScienceM
---
### 1. What is PySpark?
PySpark is the Python API for Apache Spark, a powerful distributed computing engine for big data processing.
PySpark allows you to leverage the full power of Apache Spark using Python, making it easier to:
โข Handle massive datasets
โข Perform distributed computing
โข Run parallel data transformations
---
### 2. PySpark Ecosystem Components
โข Spark SQL โ Structured data queries with DataFrame and SQL APIs
โข Spark Core โ Fundamental engine for task scheduling and memory management
โข Spark Streaming โ Real-time data processing
โข MLlib โ Machine learning at scale
โข GraphX โ Graph computation
---
### 3. Why PySpark over Pandas?
| Feature | Pandas | PySpark |
| -------------- | --------------------- | ----------------------- |
| Scale | Single machine | Distributed (Cluster) |
| Speed | Slower for large data | Optimized execution |
| Language | Python | Python on JVM via Py4J |
| Learning Curve | Easier | Medium (Big Data focus) |
---
### 4. PySpark Setup in Local Machine
#### Install PySpark via pip:
pip install pyspark
#### Start PySpark Shell:
pyspark
#### Sample Code to Initialize SparkSession:
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.appName("MyApp") \
.getOrCreate()
---
### 5. RDD vs DataFrame
| Feature | RDD | DataFrame |
| ------------ | ----------------------- | ------------------------------ |
| Type | Low-level API (objects) | High-level API (structured) |
| Optimization | Manual | Catalyst Optimizer (automatic) |
| Usage | Complex transformations | SQL-like operations |
---
### 6. Creating DataFrames
#### From Python List:
data = [("Alice", 25), ("Bob", 30)]
df = spark.createDataFrame(data, ["Name", "Age"])
df.show()#### From CSV File:
df = spark.read.csv("file.csv", header=True, inferSchema=True)
df.show()---
### 7. Inspecting DataFrames
df.printSchema() # Schema info
df.columns # List column names
df.describe().show() # Summary stats
df.head(5) # First 5 rows
---
### 8. Basic Transformations
df.select("Name").show()
df.filter(df["Age"] > 25).show()
df.withColumn("AgePlus10", df["Age"] + 10).show()
df.drop("Age").show()---
### 9. Working with SQL
df.createOrReplaceTempView("people")
spark.sql("SELECT * FROM people WHERE Age > 25").show()---
### 10. Writing Data
df.write.csv("output.csv", header=True)
df.write.parquet("output_parquet/")---
### 11. Summary of Concepts Covered
โข Spark architecture & PySpark setup
โข Core components of PySpark
โข Differences between RDD and DataFrames
โข How to create, inspect, and manipulate DataFrames
โข SQL support in Spark
โข Reading/writing to/from storage
---
### Exercise
1. Load a sample CSV file and display the schema
2. Add a new column with a calculated value
3. Filter the rows based on a condition
4. Save the result as a new CSV or Parquet file
---
#Python #PySpark #BigData #ApacheSpark #DataEngineering #ETL
https://t.iss.one/DataScienceM
โค4
Topic: Python PySpark Data Sheet โ Part 2 of 3: DataFrame Transformations, Joins, and Group Operations
---
### 1. Column Operations
PySpark supports various column-wise operations using expressions.
#### Select Specific Columns:
#### Create/Modify Column:
#### Rename a Column:
#### Drop Column:
---
### 2. Filtering and Conditional Logic
#### Filter Rows:
#### Multiple Conditions:
#### Using `when` for Conditional Columns:
---
### 3. Aggregations and Grouping
#### GroupBy + Aggregations:
#### Using Aggregate Functions:
---
### 4. Sorting and Ordering
#### Sort by One or More Columns:
---
### 5. Dropping Duplicates & Handling Missing Data
#### Drop Duplicates:
#### Drop Rows with Nulls:
#### Fill Null Values:
---
### 6. Joins in PySpark
PySpark supports various join types like SQL.
#### Types of Joins:
โข
โข
โข
โข
โข
โข
#### Example โ Inner Join:
#### Left Join Example:
---
### 7. Working with Dates and Timestamps
#### Date Formatting:
---
### 8. Window Functions (Advanced Aggregations)
Used for operations like ranking, cumulative sum, and moving average.
---
### 9. Caching and Persistence
Use caching for performance when reusing data:
Or use:
---
### 10. Summary of Concepts Covered
โข Column transformations and renaming
โข Filtering and conditional logic
โข Grouping, aggregating, and sorting
โข Handling nulls and duplicates
โข All types of joins
โข Working with dates and window functions
โข Caching for performance
---
### Exercise
1. Load two CSV datasets and perform different types of joins
2. Add a new column with a custom label based on a condition
3. Aggregate salary data by department and show top-paid employees per department using window functions
4. Practice caching and observe performance
---
#Python #PySpark #DataEngineering #BigData #ETL #ApacheSpark
https://t.iss.one/DataScienceM
---
### 1. Column Operations
PySpark supports various column-wise operations using expressions.
#### Select Specific Columns:
df.select("Name", "Age").show()#### Create/Modify Column:
from pyspark.sql.functions import col
df.withColumn("AgePlus5", col("Age") + 5).show()
#### Rename a Column:
df.withColumnRenamed("Age", "UserAge").show()#### Drop Column:
df.drop("Age").show()---
### 2. Filtering and Conditional Logic
#### Filter Rows:
df.filter(col("Age") > 25).show()#### Multiple Conditions:
df.filter((col("Age") > 25) & (col("Name") != "Alice")).show()#### Using `when` for Conditional Columns:
from pyspark.sql.functions import when
df.withColumn("Category", when(col("Age") < 30, "Young").otherwise("Adult")).show()
---
### 3. Aggregations and Grouping
#### GroupBy + Aggregations:
df.groupBy("Department").count().show()
df.groupBy("Department").agg({"Salary": "avg"}).show()#### Using Aggregate Functions:
from pyspark.sql.functions import avg, max, min, count
df.groupBy("Department").agg(
avg("Salary").alias("AvgSalary"),
max("Salary").alias("MaxSalary")
).show()
---
### 4. Sorting and Ordering
#### Sort by One or More Columns:
df.orderBy("Age").show()
df.orderBy(col("Salary").desc()).show()---
### 5. Dropping Duplicates & Handling Missing Data
#### Drop Duplicates:
df.dropDuplicates(["Name", "Age"]).show()
#### Drop Rows with Nulls:
df.dropna().show()
#### Fill Null Values:
df.fillna({"Salary": 0}).show()---
### 6. Joins in PySpark
PySpark supports various join types like SQL.
#### Types of Joins:
โข
innerโข
leftโข
rightโข
outerโข
left_semiโข
left_anti#### Example โ Inner Join:
df1.join(df2, on="id", how="inner").show()
#### Left Join Example:
df1.join(df2, on="id", how="left").show()
---
### 7. Working with Dates and Timestamps
from pyspark.sql.functions import current_date, current_timestamp
df.withColumn("today", current_date()).show()
df.withColumn("now", current_timestamp()).show()
#### Date Formatting:
from pyspark.sql.functions import date_format
df.withColumn("formatted", date_format(col("Date"), "yyyy-MM-dd")).show()
---
### 8. Window Functions (Advanced Aggregations)
Used for operations like ranking, cumulative sum, and moving average.
from pyspark.sql.window import Window
from pyspark.sql.functions import row_number
window_spec = Window.partitionBy("Department").orderBy("Salary")
df.withColumn("rank", row_number().over(window_spec)).show()
---
### 9. Caching and Persistence
Use caching for performance when reusing data:
df.cache()
df.show()
Or use:
df.persist()
---
### 10. Summary of Concepts Covered
โข Column transformations and renaming
โข Filtering and conditional logic
โข Grouping, aggregating, and sorting
โข Handling nulls and duplicates
โข All types of joins
โข Working with dates and window functions
โข Caching for performance
---
### Exercise
1. Load two CSV datasets and perform different types of joins
2. Add a new column with a custom label based on a condition
3. Aggregate salary data by department and show top-paid employees per department using window functions
4. Practice caching and observe performance
---
#Python #PySpark #DataEngineering #BigData #ETL #ApacheSpark
https://t.iss.one/DataScienceM
โค2
๐ฅ Trending Repository: data-engineer-handbook
๐ Description: This is a repo with links to everything you'd ever want to learn about data engineering
๐ Repository URL: https://github.com/DataExpert-io/data-engineer-handbook
๐ Readme: https://github.com/DataExpert-io/data-engineer-handbook#readme
๐ Statistics:
๐ Stars: 36.3K stars
๐ Watchers: 429
๐ด Forks: 7K forks
๐ป Programming Languages: Jupyter Notebook - Python - Makefile - Dockerfile - Shell
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: This is a repo with links to everything you'd ever want to learn about data engineering
๐ Repository URL: https://github.com/DataExpert-io/data-engineer-handbook
๐ Readme: https://github.com/DataExpert-io/data-engineer-handbook#readme
๐ Statistics:
๐ Stars: 36.3K stars
๐ Watchers: 429
๐ด Forks: 7K forks
๐ป Programming Languages: Jupyter Notebook - Python - Makefile - Dockerfile - Shell
๐ท๏ธ Related Topics:
#data #awesome #sql #bigdata #dataengineering #apachespark
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Modern DataFrames in Python: A Hands-On Tutorial with Polars and DuckDB
๐ Category: DATA SCIENCE
๐ Date: 2025-11-21 | โฑ๏ธ Read time: 7 min read
Struggling with slow data workflows as your datasets grow? This hands-on tutorial demonstrates how to leverage the power of modern DataFrame tools, Polars and DuckDB, to significantly boost performance in Python. Learn practical techniques to handle larger data volumes efficiently and keep your entire workflow from slowing down.
#Python #Polars #DuckDB #DataEngineering
๐ Category: DATA SCIENCE
๐ Date: 2025-11-21 | โฑ๏ธ Read time: 7 min read
Struggling with slow data workflows as your datasets grow? This hands-on tutorial demonstrates how to leverage the power of modern DataFrame tools, Polars and DuckDB, to significantly boost performance in Python. Learn practical techniques to handle larger data volumes efficiently and keep your entire workflow from slowing down.
#Python #Polars #DuckDB #DataEngineering
โค1