Forwarded from Machine Learning with Python
đ¨đģâđģ "Where do I start now?" This was the first and biggest question I faced when I started my Data Science learning journey!
â
â
â
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.iss.one/CodeProgrammerâ
Please open Telegram to view this post
VIEW IN TELEGRAM
đ9â¤1
Forwarded from Machine Learning with Python
course lecture on building Transformers from first principles:
https://www.dropbox.com/scl/fi/jhfgy8dnnvy5qq385tnms/lectureattentionneuralnetworks.pdf?rlkey=fddnkonsez76mf8bzider3hrv&dl=0
The #PyTorch notebooks also demonstrate how to implement #Transformers from scratch:
https://github.com/xbresson/CS52422025/tree/main/labslecture07
https://www.dropbox.com/scl/fi/jhfgy8dnnvy5qq385tnms/lectureattentionneuralnetworks.pdf?rlkey=fddnkonsez76mf8bzider3hrv&dl=0
The #PyTorch notebooks also demonstrate how to implement #Transformers from scratch:
https://github.com/xbresson/CS52422025/tree/main/labslecture07
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.iss.one/CodeProgrammerâ
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
đ8
Forwarded from Machine Learning with Python
Pandas Introduction to Advanced.pdf
854.8 KB
đ¨đģâđģ You can't attend a #datascience interview and not be asked about Pandas! But you don't have to memorize all its methods and functions! With this booklet, you'll learn everything you need.
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.iss.one/CodeProgrammerâ
Please open Telegram to view this post
VIEW IN TELEGRAM
đ13
Forwarded from Machine Learning with Python
Find these FREE AI Courses here đ
https://www.mltut.com/best-resources-to-learn-artificial-intelligence/
https://www.mltut.com/best-resources-to-learn-artificial-intelligence/
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.iss.one/CodeProgrammerâ
Please open Telegram to view this post
VIEW IN TELEGRAM
đ8
Forwarded from Machine Learning with Python
Exercises in Machine Learning
This book contains 75+ exercises
Download, read, and practice:
arxiv.org/pdf/2206.13446
GitHub Repo: https://github.com/michaelgutmann/ml-pen-and-paper-exercises
This book contains 75+ exercises
Download, read, and practice:
arxiv.org/pdf/2206.13446
GitHub Repo: https://github.com/michaelgutmann/ml-pen-and-paper-exercises
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.iss.one/CodeProgrammer â
đ9
Forwarded from Machine Learning with Python
Linear Algebra
The 2nd best book on linear algebra with ~1000 practice problems. A MUST for AI & Machine Learning.
Completely FREE.
Download it: https://www.cs.ox.ac.uk/files/12921/book.pdf
The 2nd best book on linear algebra with ~1000 practice problems. A MUST for AI & Machine Learning.
Completely FREE.
Download it: https://www.cs.ox.ac.uk/files/12921/book.pdf
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.iss.one/CodeProgrammerâ
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
đ4â¤2
#MachineLearning Systems â Principles and Practices of Engineering Artificially Intelligent Systems: https://mlsysbook.ai/
open-source textbook focuses on how to design and implement AI systems effectively
open-source textbook focuses on how to design and implement AI systems effectively
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.iss.one/DataScienceMâ
Please open Telegram to view this post
VIEW IN TELEGRAM
â¤5đ3
Forwarded from Machine Learning with Python
This book is for readers looking to learn new #machinelearning algorithms or understand algorithms at a deeper level. Specifically, it is intended for readers interested in seeing machine learning algorithms derived from start to finish. Seeing these derivations might help a reader previously unfamiliar with common algorithms understand how they work intuitively. Or, seeing these derivations might help a reader experienced in modeling understand how different #algorithms create the models they do and the advantages and disadvantages of each one.
This book will be most helpful for those with practice in basic modeling. It does not review best practicesâsuch as feature engineering or balancing response variablesâor discuss in depth when certain models are more appropriate than others. Instead, it focuses on the elements of those models.
https://dafriedman97.github.io/mlbook/content/introduction.html
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.iss.one/CodeProgrammerâ
Please open Telegram to view this post
VIEW IN TELEGRAM
đ4â¤2
Forwarded from Machine Learning with Python
"Introduction to Probability for Data Science"
One of the best books on #Probability. Available FREE.
Download the book:
probability4datascience.com/download.html
One of the best books on #Probability. Available FREE.
Download the book:
probability4datascience.com/download.html
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.iss.one/CodeProgrammerâ
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
đ7â¤2
Forwarded from Machine Learning with Python
Top 100+ questions%0A %22Google Data Science Interview%22.pdf
16.7 MB
Google is known for its rigorous data science interview process, which typically follows a hybrid format. Candidates are expected to demonstrate strong programming skills, solid knowledge in statistics and machine learning, and a keen ability to approach problems from a product-oriented perspective.
To succeed, one must be proficient in several critical areas: statistics and probability, SQL and Python programming, product sense, and case study-based analytics.
This curated list features over 100 of the most commonly asked and important questions in Google data science interviews. It serves as a comprehensive resource to help candidates prepare effectively and confidently for the challenge ahead.
#DataScience #GoogleInterview #InterviewPrep #MachineLearning #SQL #Statistics #ProductAnalytics #Python #CareerGrowth
https://t.iss.one/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
@CodeProgrammer Matplotlib.pdf
4.3 MB
The Complete Visual Guide for Data Enthusiasts
Matplotlib is a powerful Python library for data visualization, essential not only for acing job interviews but also for building a solid foundation in analytical thinking and data storytelling.
This step-by-step tutorial guide walks learners through everything from the basics to advanced techniques in Matplotlib. It also includes a curated collection of the most frequently asked Matplotlib-related interview questions, making it an ideal resource for both beginners and experienced professionals.
#Matplotlib #DataVisualization #Python #DataScience #InterviewPrep #Analytics #TechCareer #LearnToCodeīģŋ
https://t.iss.one/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
đ10â¤2
This media is not supported in your browser
VIEW IN TELEGRAM
A new interactive sentiment visualization project has been developed, featuring a dynamic smiley face that reflects sentiment analysis results in real time. Using a natural language processing model, the system evaluates input text and adjusts the smiley face expression accordingly:
đ Positive sentiment
âšī¸ Negative sentiment
The visualization offers an intuitive and engaging way to observe sentiment dynamics as they happen.
đ GitHub: https://lnkd.in/e_gk3hfe
đ° Article: https://lnkd.in/e_baNJd2
#AI #SentimentAnalysis #DataVisualization #InteractiveDesign #NLP #MachineLearning #Python #GitHubProjects #TowardsDataScience
đ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
đą Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
The visualization offers an intuitive and engaging way to observe sentiment dynamics as they happen.
#AI #SentimentAnalysis #DataVisualization #InteractiveDesign #NLP #MachineLearning #Python #GitHubProjects #TowardsDataScience
Please open Telegram to view this post
VIEW IN TELEGRAM
â¤3đ1
Forwarded from Machine Learning with Python
Python Cheat Sheet
âĄī¸ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
đą Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
#AI #SentimentAnalysis #DataVisualization #pandas #Numpy #InteractiveDesign #NLP #MachineLearning #Python #GitHubProjects #TowardsDataScience
Please open Telegram to view this post
VIEW IN TELEGRAM
đ4â¤1
Topic: Python Matplotlib â From Easy to Top: Part 1 of 6: Introduction and Basic Plotting
---
### 1. What is Matplotlib?
âĸ Matplotlib is the most widely used Python library for data visualization.
âĸ It provides an object-oriented API for embedding plots into applications and supports a wide variety of graphs: line charts, bar charts, scatter plots, histograms, etc.
---
### 2. Installing and Importing Matplotlib
Install Matplotlib if you haven't:
Import the main module and pyplot interface:
---
### 3. Plotting a Basic Line Chart
---
### 4. Customizing Line Style, Color, and Markers
---
### 5. Adding Multiple Lines to a Plot
---
### 6. Scatter Plot
Used to show relationships between two variables.
---
### 7. Bar Chart
---
### 8. Histogram
---
### 9. Saving the Plot to a File
---
### 10. Summary
âĸ
âĸ You can customize styles, add labels, titles, and legends.
âĸ Understanding basic plots is the foundation for creating advanced visualizations.
---
Exercise
âĸ Plot
âĸ Create a scatter plot of 100 random points.
âĸ Create and save a histogram from a normal distribution sample of 500 points.
---
#Python #Matplotlib #DataVisualization #Plots #Charts
https://t.iss.one/DataScienceM
---
### 1. What is Matplotlib?
âĸ Matplotlib is the most widely used Python library for data visualization.
âĸ It provides an object-oriented API for embedding plots into applications and supports a wide variety of graphs: line charts, bar charts, scatter plots, histograms, etc.
---
### 2. Installing and Importing Matplotlib
Install Matplotlib if you haven't:
pip install matplotlib
Import the main module and pyplot interface:
import matplotlib.pyplot as plt
import numpy as np
---
### 3. Plotting a Basic Line Chart
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]
plt.plot(x, y)
plt.title("Simple Line Plot")
plt.xlabel("X Axis")
plt.ylabel("Y Axis")
plt.grid(True)
plt.show()
---
### 4. Customizing Line Style, Color, and Markers
plt.plot(x, y, color='green', linestyle='--', marker='o', label='Data')
plt.title("Styled Line Plot")
plt.xlabel("X Axis")
plt.ylabel("Y Axis")
plt.legend()
plt.show()
---
### 5. Adding Multiple Lines to a Plot
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)
plt.plot(x, y1, label="sin(x)", color='blue')
plt.plot(x, y2, label="cos(x)", color='red')
plt.title("Multiple Line Plot")
plt.xlabel("X Axis")
plt.ylabel("Y Axis")
plt.legend()
plt.grid(True)
plt.show()
---
### 6. Scatter Plot
Used to show relationships between two variables.
x = np.random.rand(100)
y = np.random.rand(100)
plt.scatter(x, y, color='purple', alpha=0.6)
plt.title("Scatter Plot")
plt.xlabel("X Axis")
plt.ylabel("Y Axis")
plt.show()
---
### 7. Bar Chart
categories = ['A', 'B', 'C', 'D']
values = [4, 7, 2, 5]
plt.bar(categories, values, color='skyblue')
plt.title("Bar Chart Example")
plt.xlabel("Category")
plt.ylabel("Value")
plt.show()
---
### 8. Histogram
data = np.random.randn(1000)
plt.hist(data, bins=30, color='orange', edgecolor='black')
plt.title("Histogram")
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.show()
---
### 9. Saving the Plot to a File
plt.plot([1, 2, 3], [4, 5, 6])
plt.savefig("plot.png")
---
### 10. Summary
âĸ
matplotlib.pyplot is the key module for creating all kinds of plots.âĸ You can customize styles, add labels, titles, and legends.
âĸ Understanding basic plots is the foundation for creating advanced visualizations.
---
Exercise
âĸ Plot
y = x^2 and y = x^3 on the same figure.âĸ Create a scatter plot of 100 random points.
âĸ Create and save a histogram from a normal distribution sample of 500 points.
---
#Python #Matplotlib #DataVisualization #Plots #Charts
https://t.iss.one/DataScienceM
â¤3
Topic: Python Matplotlib â From Easy to Top: Part 2 of 6: Subplots, Figures, and Layout Management
---
### 1. Introduction to Figures and Axes
âĸ In Matplotlib, a Figure is the entire image or window on which everything is drawn.
âĸ An Axes is a part of the figure where data is plotted â it contains titles, labels, ticks, lines, etc.
Basic hierarchy:
* Figure â contains one or more Axes
* Axes â the area where the data is actually plotted
* Axis â x-axis and y-axis inside an Axes
---
### 2. Creating Multiple Subplots using `plt.subplot()`
Explanation:
*
*
---
### 3. Creating Subplots with `plt.subplots()` (Recommended)
---
### 4. Sharing Axes Between Subplots
---
### 5. Adjusting Spacing with `subplots_adjust()`
---
### 6. Nested Plots Using `inset_axes`
You can add a small plot inside another:
---
### 7. Advanced Layout: Gridspec
---
### 8. Summary
âĸ Use
âĸ Share axes to align multiple plots.
âĸ Use
âĸ Always use
---
### Exercise
âĸ Create a 2x2 grid of subplots showing different trigonometric functions.
âĸ Add an inset plot inside a sine wave chart.
âĸ Use Gridspec to create an asymmetric layout with at least 5 different plots.
---
#Python #Matplotlib #Subplots #DataVisualization #Gridspec #LayoutManagement
https://t.iss.one/DataScienceM
---
### 1. Introduction to Figures and Axes
âĸ In Matplotlib, a Figure is the entire image or window on which everything is drawn.
âĸ An Axes is a part of the figure where data is plotted â it contains titles, labels, ticks, lines, etc.
Basic hierarchy:
* Figure â contains one or more Axes
* Axes â the area where the data is actually plotted
* Axis â x-axis and y-axis inside an Axes
import matplotlib.pyplot as plt
import numpy as np
---
### 2. Creating Multiple Subplots using `plt.subplot()`
x = np.linspace(0, 2*np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)
plt.subplot(2, 1, 1)
plt.plot(x, y1, label="sin(x)")
plt.title("First Subplot")
plt.subplot(2, 1, 2)
plt.plot(x, y2, label="cos(x)", color='green')
plt.title("Second Subplot")
plt.tight_layout()
plt.show()
Explanation:
*
subplot(2, 1, 1) means 2 rows, 1 column, this is the first plot.*
tight_layout() prevents overlap between plots.---
### 3. Creating Subplots with `plt.subplots()` (Recommended)
fig, axs = plt.subplots(2, 2, figsize=(8, 6))
x = np.linspace(0, 10, 100)
axs[0, 0].plot(x, np.sin(x))
axs[0, 0].set_title("sin(x)")
axs[0, 1].plot(x, np.cos(x))
axs[0, 1].set_title("cos(x)")
axs[1, 0].plot(x, np.tan(x))
axs[1, 0].set_title("tan(x)")
axs[1, 0].set_ylim(-10, 10)
axs[1, 1].plot(x, np.exp(-x))
axs[1, 1].set_title("exp(-x)")
plt.tight_layout()
plt.show()
---
### 4. Sharing Axes Between Subplots
fig, axs = plt.subplots(1, 2, sharey=True)
x = np.linspace(0, 10, 100)
axs[0].plot(x, np.sin(x))
axs[0].set_title("sin(x)")
axs[1].plot(x, np.cos(x), color='red')
axs[1].set_title("cos(x)")
plt.show()
---
### 5. Adjusting Spacing with `subplots_adjust()`
fig, axs = plt.subplots(2, 2)
fig.subplots_adjust(hspace=0.4, wspace=0.3)
---
### 6. Nested Plots Using `inset_axes`
You can add a small plot inside another:
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
fig, ax = plt.subplots()
x = np.linspace(0, 10, 100)
y = np.sin(x)
ax.plot(x, y)
ax.set_title("Main Plot")
inset_ax = inset_axes(ax, width="30%", height="30%", loc=1)
inset_ax.plot(x, np.cos(x), color='orange')
inset_ax.set_title("Inset", fontsize=8)
plt.show()
---
### 7. Advanced Layout: Gridspec
import matplotlib.gridspec as gridspec
fig = plt.figure(figsize=(8, 6))
gs = gridspec.GridSpec(3, 3)
ax1 = fig.add_subplot(gs[0, :])
ax2 = fig.add_subplot(gs[1, :-1])
ax3 = fig.add_subplot(gs[1:, -1])
ax4 = fig.add_subplot(gs[2, 0])
ax5 = fig.add_subplot(gs[2, 1])
ax1.set_title("Top")
ax2.set_title("Left")
ax3.set_title("Right")
ax4.set_title("Bottom Left")
ax5.set_title("Bottom Center")
plt.tight_layout()
plt.show()
---
### 8. Summary
âĸ Use
subplot() for quick layouts and subplots() for flexibility.âĸ Share axes to align multiple plots.
âĸ Use
inset_axes and gridspec for custom and complex layouts.âĸ Always use
tight_layout() or subplots_adjust() to clean up spacing.---
### Exercise
âĸ Create a 2x2 grid of subplots showing different trigonometric functions.
âĸ Add an inset plot inside a sine wave chart.
âĸ Use Gridspec to create an asymmetric layout with at least 5 different plots.
---
#Python #Matplotlib #Subplots #DataVisualization #Gridspec #LayoutManagement
https://t.iss.one/DataScienceM
â¤1
Topic: Python Matplotlib â From Easy to Top: Part 3 of 6: Plot Customization and Styling
---
### 1. Why Customize Plots?
âĸ Customization improves readability and presentation.
âĸ You can control everything from fonts and colors to axis ticks and legend placement.
---
### 2. Customizing Titles, Labels, and Ticks
---
### 3. Changing Line Styles and Markers
Common styles:
âĸ Line styles:
âĸ Markers:
âĸ Colors:
---
### 4. Adding Legends
---
### 5. Using Annotations
Annotations help highlight specific points:
---
### 6. Customizing Axes Appearance
---
### 7. Setting Plot Limits
---
### 8. Using Style Sheets
Matplotlib has built-in style sheets for quick beautification.
Popular styles:
---
### 9. Creating Grids and Minor Ticks
---
### 10. Summary
âĸ Customize everything: lines, axes, colors, labels, and grid.
âĸ Use legends and annotations for clarity.
âĸ Apply styles and themes for professional looks.
âĸ Small changes improve the quality of your plots significantly.
---
### Exercise
âĸ Plot sin(x) with red dashed lines and circle markers.
âĸ Add a title, custom x/y labels, and set axis ranges manually.
âĸ Apply the
---
#Python #Matplotlib #Customization #DataVisualization #PlotStyling
https://t.iss.one/DataScienceM
---
### 1. Why Customize Plots?
âĸ Customization improves readability and presentation.
âĸ You can control everything from fonts and colors to axis ticks and legend placement.
---
### 2. Customizing Titles, Labels, and Ticks
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 10, 100)
y = np.sin(x)
plt.plot(x, y)
plt.title("Sine Wave", fontsize=16, color='navy')
plt.xlabel("Time (s)", fontsize=12)
plt.ylabel("Amplitude", fontsize=12)
plt.xticks(np.arange(0, 11, 1))
plt.yticks(np.linspace(-1, 1, 5))
plt.grid(True)
plt.show()
---
### 3. Changing Line Styles and Markers
plt.plot(x, y, color='red', linestyle='--', linewidth=2, marker='o', markersize=5, label='sin(x)')
plt.title("Styled Sine Curve")
plt.legend()
plt.grid(True)
plt.show()
Common styles:
âĸ Line styles:
'-', '--', ':', '-.'âĸ Markers:
'o', '^', 's', '*', 'D', etc.âĸ Colors:
'r', 'g', 'b', 'c', 'm', 'y', 'k', etc.---
### 4. Adding Legends
plt.plot(x, np.sin(x), label="Sine")
plt.plot(x, np.cos(x), label="Cosine")
plt.legend(loc='upper right', fontsize=10)
plt.title("Legend Example")
plt.show()
---
### 5. Using Annotations
Annotations help highlight specific points:
plt.plot(x, y)
plt.annotate('Peak', xy=(np.pi/2, 1), xytext=(2, 1.2),
arrowprops=dict(facecolor='black', shrink=0.05))
plt.title("Annotated Peak")
plt.show()
---
### 6. Customizing Axes Appearance
fig, ax = plt.subplots()
ax.plot(x, y)
# Remove top and right border
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# Customize axis colors and widths
ax.spines['left'].set_color('blue')
ax.spines['left'].set_linewidth(2)
plt.title("Customized Axes")
plt.show()
---
### 7. Setting Plot Limits
plt.plot(x, y)
plt.xlim(0, 10)
plt.ylim(-1.5, 1.5)
plt.title("Limit Axes")
plt.show()
---
### 8. Using Style Sheets
Matplotlib has built-in style sheets for quick beautification.
plt.style.use('ggplot')
plt.plot(x, np.sin(x))
plt.title("ggplot Style")
plt.show()Popular styles:
seaborn, fivethirtyeight, bmh, dark_background, etc.---
### 9. Creating Grids and Minor Ticks
plt.plot(x, y)
plt.grid(True, which='both', linestyle='--', linewidth=0.5)
plt.minorticks_on()
plt.title("Grid with Minor Ticks")
plt.show()
---
### 10. Summary
âĸ Customize everything: lines, axes, colors, labels, and grid.
âĸ Use legends and annotations for clarity.
âĸ Apply styles and themes for professional looks.
âĸ Small changes improve the quality of your plots significantly.
---
### Exercise
âĸ Plot sin(x) with red dashed lines and circle markers.
âĸ Add a title, custom x/y labels, and set axis ranges manually.
âĸ Apply the
'seaborn-darkgrid' style and highlight the peak with an annotation.---
#Python #Matplotlib #Customization #DataVisualization #PlotStyling
https://t.iss.one/DataScienceM
â¤3
Topic: Python Matplotlib â From Easy to Top: Part 4 of 6: Advanced Charts â Histograms, Pie, Box, Area, and Error Bars
---
### 1. Histogram: Visualizing Data Distribution
Histograms show frequency distribution of numerical data.
Customizations:
âĸ
âĸ
âĸ
---
### 2. Pie Chart: Showing Proportions
---
### 3. Box Plot: Summarizing Distribution Stats
Box plots show min, Q1, median, Q3, max, and outliers.
Tip: Use
---
### 4. Area Chart: Cumulative Trends
---
### 5. Error Bar Plot: Showing Uncertainty
---
### 6. Horizontal Bar Chart
---
### 7. Stacked Bar Chart
---
### 8. Summary
âĸ Histograms show frequency distribution
âĸ Pie charts are good for proportions
âĸ Box plots summarize spread and outliers
âĸ Area charts visualize trends over time
âĸ Error bars indicate uncertainty in measurements
âĸ Stacked and horizontal bars enhance categorical data clarity
---
### Exercise
âĸ Create a pie chart showing budget allocation of 5 departments.
âĸ Plot 3 histograms on the same figure with different distributions.
âĸ Build a stacked bar chart for monthly expenses across 3 categories.
âĸ Add error bars to a decaying function and annotate the max point.
---
#Python #Matplotlib #DataVisualization #AdvancedCharts #Histograms #PieCharts #BoxPlots
https://t.iss.one/DataScienceM
---
### 1. Histogram: Visualizing Data Distribution
Histograms show frequency distribution of numerical data.
import matplotlib.pyplot as plt
import numpy as np
data = np.random.randn(1000)
plt.hist(data, bins=30, color='skyblue', edgecolor='black')
plt.title("Normal Distribution Histogram")
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.grid(True)
plt.show()
Customizations:
âĸ
bins=30 â controls granularityâĸ
density=True â normalize the histogramâĸ
alpha=0.7 â transparency---
### 2. Pie Chart: Showing Proportions
labels = ['Python', 'JavaScript', 'C++', 'Java']
sizes = [45, 30, 15, 10]
colors = ['gold', 'lightgreen', 'lightcoral', 'lightskyblue']
explode = (0.1, 0, 0, 0) # explode the 1st slice
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%',
startangle=140, explode=explode, shadow=True)
plt.title("Programming Language Popularity")
plt.axis('equal') # Equal aspect ratio ensures pie is circular
plt.show()
---
### 3. Box Plot: Summarizing Distribution Stats
Box plots show min, Q1, median, Q3, max, and outliers.
data = [np.random.normal(0, std, 100) for std in range(1, 4)]
plt.boxplot(data, patch_artist=True, labels=['std=1', 'std=2', 'std=3'])
plt.title("Box Plot Example")
plt.grid(True)
plt.show()
Tip: Use
vert=False to make a horizontal boxplot.---
### 4. Area Chart: Cumulative Trends
x = np.arange(1, 6)
y1 = np.array([1, 3, 4, 5, 7])
y2 = np.array([1, 2, 4, 6, 8])
plt.fill_between(x, y1, color="skyblue", alpha=0.5, label="Y1")
plt.fill_between(x, y2, color="orange", alpha=0.5, label="Y2")
plt.title("Area Chart")
plt.xlabel("X Axis")
plt.ylabel("Y Axis")
plt.legend()
plt.show()
---
### 5. Error Bar Plot: Showing Uncertainty
x = np.arange(0.1, 4, 0.5)
y = np.exp(-x)
error = 0.1 + 0.2 * x
plt.errorbar(x, y, yerr=error, fmt='-o', color='teal', ecolor='red', capsize=5)
plt.title("Error Bar Plot")
plt.xlabel("X Axis")
plt.ylabel("Y Axis")
plt.grid(True)
plt.show()
---
### 6. Horizontal Bar Chart
langs = ['Python', 'Java', 'C++', 'JavaScript']
popularity = [50, 40, 30, 45]
plt.barh(langs, popularity, color='plum')
plt.title("Programming Language Popularity")
plt.xlabel("Popularity")
plt.show()
---
### 7. Stacked Bar Chart
labels = ['2019', '2020', '2021']
men = [20, 35, 30]
women = [25, 32, 34]
x = np.arange(len(labels))
width = 0.5
plt.bar(x, men, width, label='Men')
plt.bar(x, women, width, bottom=men, label='Women')
plt.ylabel('Scores')
plt.title('Scores by Year and Gender')
plt.xticks(x, labels)
plt.legend()
plt.show()
---
### 8. Summary
âĸ Histograms show frequency distribution
âĸ Pie charts are good for proportions
âĸ Box plots summarize spread and outliers
âĸ Area charts visualize trends over time
âĸ Error bars indicate uncertainty in measurements
âĸ Stacked and horizontal bars enhance categorical data clarity
---
### Exercise
âĸ Create a pie chart showing budget allocation of 5 departments.
âĸ Plot 3 histograms on the same figure with different distributions.
âĸ Build a stacked bar chart for monthly expenses across 3 categories.
âĸ Add error bars to a decaying function and annotate the max point.
---
#Python #Matplotlib #DataVisualization #AdvancedCharts #Histograms #PieCharts #BoxPlots
https://t.iss.one/DataScienceM
Topic: Python Matplotlib â From Easy to Top: Part 5 of 6: Images, Heatmaps, and Colorbars
---
### 1. Introduction
Matplotlib can handle images, heatmaps, and color mapping effectively, making it a great tool for visualizing:
âĸ Image data (grayscale or color)
âĸ Matrix-like data with heatmaps
âĸ Any data that needs a gradient of colors
---
### 2. Displaying Images with `imshow()`
Key parameters:
âĸ
âĸ
---
### 3. Displaying Color Images
Note: Image should be PNG or JPG. For real projects, use PIL or OpenCV for more control.
---
### 4. Creating a Heatmap from a 2D Matrix
---
### 5. Customizing Color Maps
You can reverse or customize color maps:
You can also create custom color ranges using
---
### 6. Using `matshow()` for Matrix-Like Data
---
### 7. Annotating Heatmaps
---
### 8. Displaying Multiple Images in Subplots
---
### 9. Saving Heatmaps and Figures
---
### 10. Summary
âĸ
âĸ Heatmaps are great for matrix or correlation data
âĸ Use colorbars and annotations to add context
âĸ Customize colormaps with
âĸ Save your visualizations easily using
---
### Exercise
âĸ Load a grayscale image using NumPy and display it.
âĸ Create a 10Ã10 heatmap with annotations.
âĸ Display 3 subplots of the same matrix using 3 different colormaps.
âĸ Save one of the heatmaps with high resolution.
---
#Python #Matplotlib #Heatmaps #DataVisualization #Images #ColorMapping
https://t.iss.one/DataScienceM
---
### 1. Introduction
Matplotlib can handle images, heatmaps, and color mapping effectively, making it a great tool for visualizing:
âĸ Image data (grayscale or color)
âĸ Matrix-like data with heatmaps
âĸ Any data that needs a gradient of colors
---
### 2. Displaying Images with `imshow()`
import matplotlib.pyplot as plt
import numpy as np
# Create a random grayscale image
img = np.random.rand(10, 10)
plt.imshow(img, cmap='gray')
plt.title("Grayscale Image")
plt.colorbar()
plt.show()
Key parameters:
âĸ
cmap â color map (gray, hot, viridis, coolwarm, etc.)âĸ
interpolation â for smoothing pixelation (nearest, bilinear, bicubic)---
### 3. Displaying Color Images
import matplotlib.image as mpimg
img = mpimg.imread('example.png') # image must be in your directory
plt.imshow(img)
plt.title("Color Image")
plt.axis('off') # Hide axes
plt.show()
Note: Image should be PNG or JPG. For real projects, use PIL or OpenCV for more control.
---
### 4. Creating a Heatmap from a 2D Matrix
matrix = np.random.rand(6, 6)
plt.imshow(matrix, cmap='viridis', interpolation='nearest')
plt.title("Heatmap Example")
plt.colorbar(label="Intensity")
plt.xticks(range(6), ['A', 'B', 'C', 'D', 'E', 'F'])
plt.yticks(range(6), ['P', 'Q', 'R', 'S', 'T', 'U'])
plt.show()
---
### 5. Customizing Color Maps
You can reverse or customize color maps:
plt.imshow(matrix, cmap='coolwarm_r') # Reversed coolwarm
You can also create custom color ranges using
vmin and vmax:plt.imshow(matrix, cmap='hot', vmin=0.2, vmax=0.8)
---
### 6. Using `matshow()` for Matrix-Like Data
matshow() is optimized for visualizing 2D arrays:plt.matshow(matrix)
plt.title("Matrix View with matshow()")
plt.colorbar()
plt.show()
---
### 7. Annotating Heatmaps
fig, ax = plt.subplots()
cax = ax.imshow(matrix, cmap='plasma')
# Add text annotations
for i in range(matrix.shape[0]):
for j in range(matrix.shape[1]):
ax.text(j, i, f'{matrix[i, j]:.2f}', ha='center', va='center', color='white')
plt.title("Annotated Heatmap")
plt.colorbar(cax)
plt.show()
---
### 8. Displaying Multiple Images in Subplots
fig, axs = plt.subplots(1, 2, figsize=(10, 4))
axs[0].imshow(matrix, cmap='Blues')
axs[0].set_title("Blues")
axs[1].imshow(matrix, cmap='Greens')
axs[1].set_title("Greens")
plt.tight_layout()
plt.show()
---
### 9. Saving Heatmaps and Figures
plt.imshow(matrix, cmap='magma')
plt.title("Save This Heatmap")
plt.colorbar()
plt.savefig("heatmap.png", dpi=300)
plt.close()
---
### 10. Summary
âĸ
imshow() and matshow() visualize 2D data or imagesâĸ Heatmaps are great for matrix or correlation data
âĸ Use colorbars and annotations to add context
âĸ Customize colormaps with
cmap, vmin, vmaxâĸ Save your visualizations easily using
savefig()---
### Exercise
âĸ Load a grayscale image using NumPy and display it.
âĸ Create a 10Ã10 heatmap with annotations.
âĸ Display 3 subplots of the same matrix using 3 different colormaps.
âĸ Save one of the heatmaps with high resolution.
---
#Python #Matplotlib #Heatmaps #DataVisualization #Images #ColorMapping
https://t.iss.one/DataScienceM
â¤6