Topic: Python SciPy – From Easy to Top: Part 3 of 6: Optimization Basics
---
1. What is Optimization?
• Optimization is the process of finding the minimum or maximum of a function.
• SciPy provides tools to solve these problems efficiently.
---
2. Using `scipy.optimize.minimize`
This function minimizes a scalar function of one or more variables.
Example: Minimize the function f(x) = (x - 3)^2
---
**3. Minimizing Multivariable Functions**
Example: Minimize f(x, y) = (x - 2)^2 + (y + 3)^2
---
**4. Using Bounds and Constraints**
You can restrict the variables within bounds or constraints.
Example: Minimize f(x) = (x - 3)^2 with x between 0 and 5
---
5. Root Finding with `optimize.root_scalar`
Find a root of a scalar function.
Example: Find root of f(x) = x^3 - 1 between 0 and 2
---
6. Summary
• SciPy’s optimization tools help find minima, maxima, and roots.
• Supports single and multivariable problems with constraints.
---
Exercise
• Minimize the function f(x) = x^4 - 3x^3 + 2 over the range \[-2, 3].
• Find the root of f(x) = cos(x) - x near x=1.
---
#Python #SciPy #Optimization #RootFinding #ScientificComputing
https://t.iss.one/DataScienceM
---
1. What is Optimization?
• Optimization is the process of finding the minimum or maximum of a function.
• SciPy provides tools to solve these problems efficiently.
---
2. Using `scipy.optimize.minimize`
This function minimizes a scalar function of one or more variables.
Example: Minimize the function f(x) = (x - 3)^2
from scipy import optimize
def f(x):
return (x - 3)**2
result = optimize.minimize(f, x0=0)
print("Minimum value:", result.fun)
print("At x =", result.x)
---
**3. Minimizing Multivariable Functions**
Example: Minimize f(x, y) = (x - 2)^2 + (y + 3)^2
def f(vars):
x, y = vars
return (x - 2)**2 + (y + 3)**2
result = optimize.minimize(f, x0=[0, 0])
print("Minimum value:", result.fun)
print("At x, y =", result.x)
---
**4. Using Bounds and Constraints**
You can restrict the variables within bounds or constraints.
Example: Minimize f(x) = (x - 3)^2 with x between 0 and 5
result = optimize.minimize(f, x0=0, bounds=[(0, 5)])
print("Minimum with bounds:", result.fun)
print("At x =", result.x)
---
5. Root Finding with `optimize.root_scalar`
Find a root of a scalar function.
Example: Find root of f(x) = x^3 - 1 between 0 and 2
def f(x):
return x**3 - 1
root = optimize.root_scalar(f, bracket=[0, 2])
print("Root:", root.root)
---
6. Summary
• SciPy’s optimization tools help find minima, maxima, and roots.
• Supports single and multivariable problems with constraints.
---
Exercise
• Minimize the function f(x) = x^4 - 3x^3 + 2 over the range \[-2, 3].
• Find the root of f(x) = cos(x) - x near x=1.
---
#Python #SciPy #Optimization #RootFinding #ScientificComputing
https://t.iss.one/DataScienceM
❤3