Topic: 25 Important Questions on Handling Datasets of All Types in Python
---
1. What are the common types of datasets?
Structured, unstructured, and semi-structured.
---
2. How do you load a CSV file in Python?
Using
---
3. How to check for missing values in a dataset?
Using
---
4. What methods can you use to handle missing data?
Remove rows/columns, mean/median/mode imputation, interpolation.
---
5. How to detect outliers in data?
Using boxplots, z-score, or interquartile range (IQR) methods.
---
6. What is data normalization?
Scaling data to a specific range, often \[0,1].
---
7. What is data standardization?
Rescaling data to have zero mean and unit variance.
---
8. How to encode categorical variables?
Label encoding or one-hot encoding.
---
9. What libraries help with image data processing in Python?
OpenCV, Pillow, scikit-image.
---
10. How do you load and preprocess images for ML models?
Resize, normalize pixel values, data augmentation.
---
11. How can audio data be loaded in Python?
Using libraries like
---
12. What are MFCCs in audio processing?
Mel-frequency cepstral coefficients – features extracted from audio signals.
---
13. How do you preprocess text data?
Tokenization, removing stopwords, stemming, lemmatization.
---
14. What is TF-IDF?
A technique to weigh words based on frequency and importance.
---
15. How do you handle variable-length sequences in text or time series?
Padding sequences or using packed sequences.
---
16. How to handle time series missing data?
Forward fill, backward fill, interpolation.
---
17. What is data augmentation?
Creating new data samples by transforming existing data.
---
18. How to split datasets into training and testing sets?
Using
---
19. What is batch processing in ML?
Processing data in small batches during training for efficiency.
---
20. How to save and load datasets efficiently?
Using formats like HDF5, pickle, or TFRecord.
---
21. What is feature scaling and why is it important?
Adjusting features to a common scale to improve model training.
---
22. How to detect and remove duplicate data?
Using
---
23. What is one-hot encoding and when to use it?
Converting categorical variables to binary vectors, used for nominal categories.
---
24. How to handle imbalanced datasets?
Techniques like oversampling, undersampling, or synthetic data generation (SMOTE).
---
25. How to visualize datasets in Python?
Using matplotlib, seaborn, or plotly for charts and graphs.
---
#DataScience #DataHandling #Python #MachineLearning #DataPreprocessing
https://t.iss.one/DataScience4M
---
1. What are the common types of datasets?
Structured, unstructured, and semi-structured.
---
2. How do you load a CSV file in Python?
Using
pandas.read_csv() function.---
3. How to check for missing values in a dataset?
Using
df.isnull().sum() in pandas.---
4. What methods can you use to handle missing data?
Remove rows/columns, mean/median/mode imputation, interpolation.
---
5. How to detect outliers in data?
Using boxplots, z-score, or interquartile range (IQR) methods.
---
6. What is data normalization?
Scaling data to a specific range, often \[0,1].
---
7. What is data standardization?
Rescaling data to have zero mean and unit variance.
---
8. How to encode categorical variables?
Label encoding or one-hot encoding.
---
9. What libraries help with image data processing in Python?
OpenCV, Pillow, scikit-image.
---
10. How do you load and preprocess images for ML models?
Resize, normalize pixel values, data augmentation.
---
11. How can audio data be loaded in Python?
Using libraries like
librosa or scipy.io.wavfile.---
12. What are MFCCs in audio processing?
Mel-frequency cepstral coefficients – features extracted from audio signals.
---
13. How do you preprocess text data?
Tokenization, removing stopwords, stemming, lemmatization.
---
14. What is TF-IDF?
A technique to weigh words based on frequency and importance.
---
15. How do you handle variable-length sequences in text or time series?
Padding sequences or using packed sequences.
---
16. How to handle time series missing data?
Forward fill, backward fill, interpolation.
---
17. What is data augmentation?
Creating new data samples by transforming existing data.
---
18. How to split datasets into training and testing sets?
Using
train_test_split from scikit-learn.---
19. What is batch processing in ML?
Processing data in small batches during training for efficiency.
---
20. How to save and load datasets efficiently?
Using formats like HDF5, pickle, or TFRecord.
---
21. What is feature scaling and why is it important?
Adjusting features to a common scale to improve model training.
---
22. How to detect and remove duplicate data?
Using
df.duplicated() and df.drop_duplicates().---
23. What is one-hot encoding and when to use it?
Converting categorical variables to binary vectors, used for nominal categories.
---
24. How to handle imbalanced datasets?
Techniques like oversampling, undersampling, or synthetic data generation (SMOTE).
---
25. How to visualize datasets in Python?
Using matplotlib, seaborn, or plotly for charts and graphs.
---
#DataScience #DataHandling #Python #MachineLearning #DataPreprocessing
https://t.iss.one/DataScience4M
❤6
  In Python, handling CSV files is straightforward using the built-in 
#python #csv #pandas #datahandling #fileio #interviewtips
👉 @DataScience4
  csv module for reading and writing tabular data, or pandas for advanced analysis—essential for data processing tasks like importing/exporting datasets in interviews.# Reading CSV with csv module (basic)
import csv
with open('data.csv', 'r') as file:
reader = csv.reader(file)
data = list(reader) # data = [['Name', 'Age'], ['Alice', '30'], ['Bob', '25']]
# Writing CSV with csv module
import csv
with open('output.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['Name', 'Age']) # Header
writer.writerows([['Alice', 30], ['Bob', 25]]) # Data rows
# Advanced: Reading with pandas (handles headers, missing values)
import pandas as pd
df = pd.read_csv('data.csv') # df = DataFrame with columns 'Name', 'Age'
print(df.head()) # Output: First 5 rows preview
# Writing with pandas
df.to_csv('output.csv', index=False) # Saves without row indices
#python #csv #pandas #datahandling #fileio #interviewtips
👉 @DataScience4
