Machine Learning
39.2K subscribers
3.83K photos
32 videos
41 files
1.3K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
Topic: Handling Datasets of All Types – Part 4 of 5: Text Data Processing and Natural Language Processing (NLP)

---

1. Understanding Text Data

• Text data is unstructured and requires preprocessing to convert into numeric form for ML models.

• Common tasks: classification, sentiment analysis, language modeling.

---

2. Text Preprocessing Steps

Tokenization: Splitting text into words or subwords.

Lowercasing: Convert all text to lowercase for uniformity.

Removing Punctuation and Stopwords: Clean unnecessary words.

Stemming and Lemmatization: Reduce words to their root form.

---

3. Encoding Text Data

Bag-of-Words (BoW): Represents text as word count vectors.

TF-IDF (Term Frequency-Inverse Document Frequency): Weighs words based on importance.

Word Embeddings: Dense vector representations capturing semantic meaning (e.g., Word2Vec, GloVe).

---

4. Loading and Processing Text Data in Python

from sklearn.feature_extraction.text import TfidfVectorizer

texts = ["I love data science.", "Data science is fun."]
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform(texts)


---

5. Handling Large Text Datasets

• Use libraries like NLTK, spaCy, and Transformers.

• For deep learning, tokenize using models like BERT or GPT.

---

6. Summary

• Text data needs extensive preprocessing and encoding.

• Choosing the right representation is crucial for model success.

---

Exercise

• Clean a set of sentences by tokenizing and removing stopwords.

• Convert cleaned text into TF-IDF vectors.

---

#NLP #TextProcessing #DataScience #MachineLearning #Python

https://t.iss.one/DataScienceM
3👍1