π PYTHON PROGRAMMING (2023)
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/289
π¬ Tags: #pandas
USEFUL CHANNELS FOR YOU
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/289
π¬ Tags: #pandas
USEFUL CHANNELS FOR YOU
π9π₯1
π Mastering Pandas (2024)
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/1209
π¬ Tags: #pandas
π BEST DATA SCIENCE CHANNELS ON TELEGRAM π
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/1209
π¬ Tags: #pandas
π BEST DATA SCIENCE CHANNELS ON TELEGRAM π
π7π6
https://t.iss.one/+MhmkscCzIYQ2MmM8
Please open Telegram to view this post
VIEW IN TELEGRAM
π7π1
π Ultimate Pandas for Data Manipulation and Visualization (2024)
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/1612
π¬ Tags: #Pandas #DataManipulation
π BEST DATA SCIENCE CHANNELS ON TELEGRAM π
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/1612
π¬ Tags: #Pandas #DataManipulation
π BEST DATA SCIENCE CHANNELS ON TELEGRAM π
π6β€5
π Python Pandas Tutorial For Beginners (2024)
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/1697
π¬ Tags: #pandas
π BEST DATA SCIENCE CHANNELS ON TELEGRAM π
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/1697
π¬ Tags: #pandas
π BEST DATA SCIENCE CHANNELS ON TELEGRAM π
π8
π MASTERING PYTHON FOR DATA SCIENCE WITH NUMPY AND PANDAS (2024)
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/1728
π¬ Tags: #numpy #pandas
β USEFUL CHANNELS FOR YOU βοΈ
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/1728
π¬ Tags: #numpy #pandas
β USEFUL CHANNELS FOR YOU βοΈ
π6
π Pandas Guide (2024)
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/1761
π¬ Tags: #pandas
β USEFUL CHANNELS FOR YOU βοΈ
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/1761
π¬ Tags: #pandas
β USEFUL CHANNELS FOR YOU βοΈ
π9β€3
π DataFrame Manipulation (2024)
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/1797
π¬ Tags: #pandas
β USEFUL CHANNELS FOR YOU βοΈ
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/1797
π¬ Tags: #pandas
β USEFUL CHANNELS FOR YOU βοΈ
π8β€1
Forwarded from Machine Learning with Python
Pandas β‘οΈ Polars β‘οΈ SQL β‘οΈ PySpark translations:
Is it useful to youβ
π Tags: #pandas #Polars #sql #Pyspark
https://t.iss.one/codeprogrammerβοΈ
Is it useful to you
https://t.iss.one/codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
π12π₯2
Forwarded from Machine Learning with Python
Pandas Introduction to Advanced.pdf
854.8 KB
π¨π»βπ» You can't attend a #datascience interview and not be asked about Pandas! But you don't have to memorize all its methods and functions! With this booklet, you'll learn everything you need.
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.iss.one/CodeProgrammerβ
Please open Telegram to view this post
VIEW IN TELEGRAM
π13
Forwarded from Machine Learning with Python
Python Cheat Sheet
β‘οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
π± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
#AI #SentimentAnalysis #DataVisualization #pandas #Numpy #InteractiveDesign #NLP #MachineLearning #Python #GitHubProjects #TowardsDataScience
Please open Telegram to view this post
VIEW IN TELEGRAM
π4β€1
Forwarded from Machine Learning with Python
from SQL to pandas.pdf
1.3 MB
#DataScience #SQL #pandas #InterviewPrep #Python #DataAnalysis #CareerGrowth #TechTips #Analytics
Please open Telegram to view this post
VIEW IN TELEGRAM
π7β€3π₯1
Forwarded from Machine Learning with Python
python_basics.pdf
212.3 KB
I've just compiled a set of clean and powerful Python Cheat Sheets to help beginners and intermediates speed up their coding workflow.
Whether you're brushing up on the basics or diving into data science, these sheets will save you time and boost your productivity.
Python Basics
Jupyter Notebook Tips
Importing Libraries
NumPy Essentials
Pandas Overview
Perfect for students, developers, and anyone looking to keep essential Python knowledge at their fingertips.
#Python #CheatSheets #PythonTips #DataScience #JupyterNotebook #NumPy #Pandas #MachineLearning #AI #CodingTips #PythonForBeginners
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€9π6π₯1
Converting Pandas DataFrames to PyTorch DataLoaders for Custom Deep Learning Model Training
Link: https://machinelearningmastery.com/converting-pandas-dataframes-to-pytorch-dataloaders-for-custom-deep-learning-model-training/
Link: https://machinelearningmastery.com/converting-pandas-dataframes-to-pytorch-dataloaders-for-custom-deep-learning-model-training/
#PyTorch #Pandas #DataLoader #DeepLearning #MachineLearning #CustomModelTraining #PythonML #DataPreparation #AIWorkflow #MLPipeline #MachineLearningMastery
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€2
In Python, handling CSV files is straightforward using the built-in
#python #csv #pandas #datahandling #fileio #interviewtips
π @DataScience4
csv module for reading and writing tabular data, or pandas for advanced analysisβessential for data processing tasks like importing/exporting datasets in interviews.# Reading CSV with csv module (basic)
import csv
with open('data.csv', 'r') as file:
reader = csv.reader(file)
data = list(reader) # data = [['Name', 'Age'], ['Alice', '30'], ['Bob', '25']]
# Writing CSV with csv module
import csv
with open('output.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['Name', 'Age']) # Header
writer.writerows([['Alice', 30], ['Bob', 25]]) # Data rows
# Advanced: Reading with pandas (handles headers, missing values)
import pandas as pd
df = pd.read_csv('data.csv') # df = DataFrame with columns 'Name', 'Age'
print(df.head()) # Output: First 5 rows preview
# Writing with pandas
df.to_csv('output.csv', index=False) # Saves without row indices
#python #csv #pandas #datahandling #fileio #interviewtips
π @DataScience4
π‘ Pandas Cheatsheet
A quick guide to essential Pandas operations for data manipulation, focusing on creating, selecting, filtering, and grouping data in a DataFrame.
1. Creating a DataFrame
The primary data structure in Pandas is the DataFrame. It's often created from a dictionary.
β’ A dictionary is defined where keys become column names and values become the data in those columns.
2. Selecting Data with
Use
β’
β’
3. Filtering Data
Select subsets of data based on conditions.
β’ The expression
β’ Using this Series as an index
4. Grouping and Aggregating
The "group by" operation involves splitting data into groups, applying a function, and combining the results.
β’
β’
#Python #Pandas #DataAnalysis #DataScience #Programming
βββββββββββββββ
By: @DataScienceM β¨
A quick guide to essential Pandas operations for data manipulation, focusing on creating, selecting, filtering, and grouping data in a DataFrame.
1. Creating a DataFrame
The primary data structure in Pandas is the DataFrame. It's often created from a dictionary.
import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 32, 28],
'City': ['New York', 'Paris', 'New York']}
df = pd.DataFrame(data)
print(df)
# Name Age City
# 0 Alice 25 New York
# 1 Bob 32 Paris
# 2 Charlie 28 New York
β’ A dictionary is defined where keys become column names and values become the data in those columns.
pd.DataFrame() converts it into a tabular structure.2. Selecting Data with
.loc and .ilocUse
.loc for label-based selection and .iloc for integer-position based selection.# Select the first row by its integer position (0)
print(df.iloc[0])
# Select the row with index label 1 and only the 'Name' column
print(df.loc[1, 'Name'])
# Output for df.iloc[0]:
# Name Alice
# Age 25
# City New York
# Name: 0, dtype: object
#
# Output for df.loc[1, 'Name']:
# Bob
β’
.iloc[0] gets all data from the row at index position 0.β’
.loc[1, 'Name'] gets the data at the intersection of index label 1 and column label 'Name'.3. Filtering Data
Select subsets of data based on conditions.
# Select rows where Age is greater than 27
filtered_df = df[df['Age'] > 27]
print(filtered_df)
# Name Age City
# 1 Bob 32 Paris
# 2 Charlie 28 New York
β’ The expression
df['Age'] > 27 creates a boolean Series (True/False).β’ Using this Series as an index
df[...] returns only the rows where the value was True.4. Grouping and Aggregating
The "group by" operation involves splitting data into groups, applying a function, and combining the results.
# Group by 'City' and calculate the mean age for each city
city_ages = df.groupby('City')['Age'].mean()
print(city_ages)
# City
# New York 26.5
# Paris 32.0
# Name: Age, dtype: float64
β’
.groupby('City') splits the DataFrame into groups based on unique city values.β’
['Age'].mean() then calculates the mean of the 'Age' column for each of these groups.#Python #Pandas #DataAnalysis #DataScience #Programming
βββββββββββββββ
By: @DataScienceM β¨
β€2π1