Code With Python
38.7K subscribers
792 photos
23 videos
21 files
718 links
This channel provides clear, practical content for developers focusing on Python, Django, data structures, algorithms, and DSA.

Admin: @Hussein_Sheikho

Ad & Earn money form your channel:
https://telega.io/?r=nikapsOH
Download Telegram
In Python, list comprehensions provide a concise way to create lists by applying an expression to each item in an iterable, often with conditions—making code more readable and efficient for tasks like filtering or transforming data, a frequent interview topic for assessing Pythonic style.

# Basic comprehension
squares = [x**2 for x in range(5)] # [0, 1, 4, 9, 16]

# With condition
evens = [x for x in range(10) if x % 2 == 0] # [0, 2, 4, 6, 8]

# Nested with transformation
matrix = [[1, 2], [3, 4]]
flattened = [num for row in matrix for num in row] # [1, 2, 3, 4]

# Equivalent to loop (interview comparison)
result = []
for x in range(5):
result.append(x**2)
# result = [0, 1, 4, 9, 16] # Same as first example


#python #listcomprehensions #interviewtips #pythonic #datastructures

👉 @DataScience4
In Python programming exams, follow these structured steps to solve problems methodically, staying focused and avoiding panic: Start by reading the problem twice to clarify inputs, outputs, and constraints—write them down simply. Break it into small sub-problems (e.g., "handle edge cases first"), plan pseudocode or a flowchart on paper, then implement step-by-step with test cases for each part, debugging one issue at a time while taking deep breaths to reset if stuck.

# Example: Solve "Find max in list" problem step-by-step
# Step 1: Understand - Input: list of nums; Output: max value; Constraints: empty list?

def find_max(numbers):
if not numbers: # Step 2: Handle edge case (empty list)
return None # Or raise ValueError

max_val = numbers # Step 3: Initialize with first element
for num in numbers[1:]: # Step 4: Loop through rest (sub-problem: compare)
if num > max_val:
max_val = num
return max_val # Step 5: Return result

# Step 6: Test cases
print(find_max([3, 1, 4, 1, 5])) # Output: 5
print(find_max([])) # Output: None
print(find_max()) # Output: 10

# If stuck: Comment code to trace, or simplify (e.g., use max() built-in first to verify)


This approach builds confidence—practice on platforms like LeetCode to make it habit! #python #problemsolving #codingexams #debugging #interviewtips

👉 @DataScience4
🔥2
In Python, for loops are versatile for iterating over iterables like lists, strings, or ranges, but advanced types include basic iteration, index-aware with enumerate(), parallel with zip(), nested for multi-level data, and comprehension-based—crucial for efficient data processing in interviews without overcomplicating.

# Basic for loop over iterable (list)
fruits = ["apple", "banana", "cherry"]
for fruit in fruits: # Iterates each element directly
print(fruit) # Output: apple \n banana \n cherry

# For loop with range() for numeric sequences
for i in range(3): # Generates 0, 1, 2 (start=0, stop=3, step=1)
print(i) # Output: 0 \n 1 \n 2

for i in range(1, 6, 2): # Start=1, stop=6, step=2
print(i) # Output: 1 \n 3 \n 5

# Index-aware with enumerate() (gets both index and value)
for index, fruit in enumerate(fruits, start=1): # start=1 for 1-based indexing
print(f"{index}: {fruit}") # Output: 1: apple \n 2: banana \n 3: cherry

# Parallel iteration with zip() (pairs multiple iterables)
names = ["Alice", "Bob", "Charlie"]
ages = [25, 30, 35]
for name, age in zip(names, ages): # Stops at shortest iterable
print(f"{name} is {age} years old") # Output: Alice is 25 years old \n Bob is 30 years old \n Charlie is 35 years old

# Nested for loops (outer for rows, inner for columns; e.g., matrix)
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
for row in matrix: # Outer: each sublist
for num in row: # Inner: each element in row
print(num, end=' ') # Output: 1 2 3 4 5 6 7 8 9 (space-separated)

# For loop in list comprehension (concise iteration with optional condition)
squares = [x**2 for x in range(5)] # Basic comprehension
print(squares) # Output: [0, 1, 4, 9, 16]

evens_squared = [x**2 for x in range(10) if x % 2 == 0] # With condition (if)
print(evens_squared) # Output: [0, 4, 16, 36, 64]

# Nested comprehension (flattens 2D list)
flattened = [num for row in matrix for num in row] # Equivalent to nested for
print(flattened) # Output: [1, 2, 3, 4, 5, 6, 7, 8, 9]


#python #forloops #range #enumerate #zip #nestedloops #listcomprehension #interviewtips #iteration

👉 @DataScience4
2
In Python, loops are essential for repeating code efficiently: for loops iterate over known sequences (like lists or ranges) when you know the number of iterations, while loops run based on a condition until it's false (ideal for unknown iteration counts or sentinel values), and nested loops handle multi-dimensional data by embedding one inside another—use break/continue for control, and comprehensions for concise alternatives in interviews.

# For loop: Use for fixed iterations over iterables (e.g., processing lists)
fruits = ["apple", "banana", "cherry"]
for fruit in fruits: # Iterates each element
print(fruit) # Output: apple \n banana \n cherry

for i in range(3): # Numeric sequence (start=0, stop=3)
print(i) # Output: 0 \n 1 \n 2

# While loop: Use when iterations depend on a dynamic condition (e.g., user input, convergence)
count = 0
while count < 3: # Runs as long as condition is True
print(count)
count += 1 # Increment to avoid infinite loop! Output: 0 \n 1 \n 2

# Nested loops: Use for 2D data (e.g., matrices, grids); outer for rows, inner for columns
matrix = [[1, 2], [3, 4]]
for row in matrix: # Outer: each sublist
for num in row: # Inner: elements in row
print(num) # Output: 1 \n 2 \n 3 \n 4

# Control statements: break (exit loop), continue (skip iteration)
for i in range(5):
if i == 2:
continue # Skip 2
if i == 4:
break # Exit at 4
print(i) # Output: 0 \n 1 \n 3

# List comprehension: Concise for loop alternative (use for simple transformations/filtering)
squares = [x**2 for x in range(5) if x % 2 == 0] # Even squares
print(squares) # Output: [0, 4, 16]


#python #loops #forloop #whileloop #nestedloops #comprehensions #interviewtips #controlflow

👉 @DataScience4
3