Code With Python
38.7K subscribers
791 photos
23 videos
21 files
717 links
This channel provides clear, practical content for developers focusing on Python, Django, data structures, algorithms, and DSA.

Admin: @Hussein_Sheikho

Ad & Earn money form your channel:
https://telega.io/?r=nikapsOH
Download Telegram
# Open the video file
video_path = 'industrial_video.mp4'
cap = cv2.VideoCapture(video_path)

# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()

if success:
# Run YOLOv8 inference on the frame
results = model(frame)

# A flag to check if fire was detected in the current frame
fire_detected_in_frame = False

# Visualize the results on the frame
annotated_frame = results[0].plot()

# Process detection results
for r in results:
for box in r.boxes:
# Check if the detected class is 'fire'
# model.names[0] should correspond to 'fire' in your custom model
if model.names[int(box.cls[0])] == 'fire' and box.conf[0] > 0.5:
fire_detected_in_frame = True
break

# If fire is detected and alarm is not already on, trigger alarm
if fire_detected_in_frame and not alarm_on:
alarm_on = True
# Run the alarm sound in a background thread to not block video feed
alarm_thread = threading.Thread(target=play_alarm)
alarm_thread.start()

# Display the annotated frame
cv2.imshow("YOLOv8 Fire Detection", annotated_frame)

# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
# Break the loop if the end of the video is reached
break

# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()

# Hashtags: #RealTimeDetection #VideoProcessing #OpenCV


---

#Step 4: Results and Discussion

After running the script, you will see a window playing the video. When the model detects an object it identifies as 'fire' with a confidence score above 50%, it will:
• Draw a colored box around the fire.
• Print "ALARM: Fire Detected!" to the console.
• Play the alarm.wav sound.

Discussion of Results:
Model Performance: The accuracy of this system depends entirely on the quality of your custom-trained model (fire_model.pt). A model trained on a diverse dataset of industrial fires (different lighting, angles, sizes) will perform best.
False Positives: The system might incorrectly identify orange/red lights, reflections, or welding sparks as fire. This is a common challenge. To fix this, you need to add more "negative" images (images of things that look like fire but aren't) to your training dataset.
Thresholding: The confidence threshold (box.conf[0] > 0.5) is a critical parameter. A lower value increases the chance of detecting real fires but also increases false alarms. A higher value reduces false alarms but might miss smaller or less obvious fires. You must tune this value based on your specific environment.
Real-World Implementation: For a real industrial facility, you would replace the video file with a live camera stream (cv2.VideoCapture(0) for a webcam) and integrate the alarm logic with a physical siren or a central monitoring system via an API or GPIO pins.

#ProjectComplete #AIforGood #IndustrialSafety

━━━━━━━━━━━━━━━
By: @DataScience4
1
By combining all the code from the steps above into database.py and main.py, you have a robust, database-driven desktop application.

Results:
Data Persistence: Your inventory and invoice data is saved in warehouse.db and will be there when you restart the application.
Integrated Workflow: Adding a purchase directly increases stock. A sale checks for and decreases stock. Production consumes raw materials and creates finished goods, all reflected in the central inventory table.
Separation of Concerns: The UI logic in main.py is cleanly separated from the data logic in database.py, making the code easier to maintain and extend.
Reporting: You can easily export a snapshot of your current inventory to a CSV file for analysis in other programs like Excel or Google Sheets.

Discussion and Next Steps:
Scalability: While SQLite is excellent for small-to-medium applications, a large-scale, multi-user system would benefit from a client-server database like PostgreSQL or MySQL.
Invoice Complexity: The current invoice system is simplified. A real system would allow multiple items per invoice and store historical invoice data for viewing and printing.
User Interface (UI/UX): The UI is functional but could be greatly improved with better layouts, icons, search/filter functionality in tables, and more intuitive workflows.
Error Handling: The error handling is basic. A production-grade app would have more comprehensive checks for user input and database operations.
Advanced Features: Future additions could include user authentication, supplier and customer management, barcode scanning, and more detailed financial reporting.

This project forms a powerful template for building custom internal business tools with Python.

#ProjectComplete #SoftwareEngineering #ERP #PythonGUI #BusinessApp

━━━━━━━━━━━━━━━
By: @DataScience4