Code With Python
39.2K subscribers
890 photos
27 videos
22 files
771 links
This channel delivers clear, practical content for developers, covering Python, Django, Data Structures, Algorithms, and DSA – perfect for learning, coding, and mastering key programming skills.
Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ“š Python Interview Questions (2024)

1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.iss.one/c/1854405158/1498

πŸ’¬ Tags: #interviews

πŸ‘‰ BEST DATA SCIENCE CHANNELS ON TELEGRAM πŸ‘ˆ
πŸ‘11❀3
In Python interviews, understanding common algorithms like binary search is crucial for demonstrating problem-solving efficiencyβ€”often asked to optimize time complexity from O(n) to O(log n) for sorted data, showing your grasp of divide-and-conquer strategies.

# Basic linear search (O(n) - naive approach)
def linear_search(arr, target):
for i in range(len(arr)):
if arr[i] == target:
return i
return -1

nums = [1, 3, 5, 7, 9]
print(linear_search(nums, 5)) # Output: 2

# Binary search (O(log n) - efficient for sorted arrays)
def binary_search(arr, target):
left, right = 0, len(arr) - 1
while left <= right: # Divide range until found or empty
mid = (left + right) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
left = mid + 1 # Search right half
else:
right = mid - 1 # Search left half
return -1

sorted_nums = [1, 3, 5, 7, 9]
print(binary_search(sorted_nums, 5)) # Output: 2
print(binary_search(sorted_nums, 6)) # Output: -1 (not found)

# Edge cases
print(binary_search([], 1)) # Output: -1 (empty list)
print(binary_search(, 1)) # Output: 0 (single element)


#python #algorithms #binarysearch #interviews #timescomplexity #problemsolving

πŸ‘‰ @DataScience4
❀4